In integrated photonic circuits, microring resonators are essential building blocks but are susceptible to phase errors due to fabrication imperfections and optical power fluctuations. Conventional active phase tuning methods are power-intensive and challenging to integrate into densely packed photonic chips. This study proposes a solution by integrating a thin 2D layer of In4/3P2Se6 (InPSe) onto silicon microring resonators (Si-MRR). This approach mitigates sensitivity to laser power and achieves non-volatile wavelength trimming. Under bias voltage, the device exhibits electro-optic behavior, offering a non-volatile phase trimming rate of −2.62 pm/V to −4.62 pm/V, corresponding to InPSe thicknesses of 45 nm to 120 nm. Low optical losses of 0.0091 to 0.0361 dB/μm were also measured, corresponding to thicknesses of 30 nm to 120 nm. The devices demonstrate stable in-situ resonance wavelength stabilization and bidirectional trimming, ensuring cyclic stability for non-volatile phase control. This advancement enhances the performance of silicon photonics across diverse applications, facilitating high-capacity, high-power operation in compact designs.