Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The automotive design process and the materials in the automotive industry in recent years has caused great interest to the industrial and academic sector. In this study was to evaluate the effect of the amount of bentonite on the thermal and rheological properties of the compound bentonite / paraffin wax. Two bentonite ratios were used: paraffin wax (40:60 and 30:70). The paraffin was characterized by Fourier transform infrared spectroscopy (FTIR), the bentonite was characterized by means of x-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray fluorescence (XRF). The bentonite/paraffine wax composite was characterized by differential-scanning calorimetry (DSC) and rheology. The sample that contains a higher amount of bentonite shows a lower latent heat, and this could cause a greater heat transfer. Finally, the sample that has a lower amount of bentonite evidenced a lower viscosity, and it could be related to a lower interaction between the particles. The sample S1 due to its lower latent heat compared to S2 could represent an interesting alternative to develop prototypingclays. since these materials are characterized by their low working temperatures and easy malleability. Keywords: automotive, prototyping, latent heat, bentonite, paraffin. References [1]X. Ferràs-Hernández, E. Tarrats-Pons, and N. Arimany-Serrat, “Disruption in the automotive industry: A Cambrian moment,” Bus. Horiz., vol. 60, no. 6, pp.855–863, 2017, doi: 10.1016/j.bushor.2017.07.011. [2]O. Heneric, G. Licht, S. Lutz, and W. Urban, “The Europerean Automotive Industry in a Global Context,” Eur. Automot. Ind. Move, pp. 5–44, 2005, doi: 10.1007/3-7908-1644-2_2. [3]S. I.-N. Delhi, “Automotive Revolution & Perspective Towards 2030,” Auto Tech Rev., vol. 5, no. 4, pp. 20–25, Apr. 2016, doi: 10.1365/s40112-016-1117-8.[4]M. Tovey, J. Owen, and P. Street, “in Automotive Design,” vol. 21, pp. 569–588, 2000. [5]Yasusato Yamada, Clay modeling : techniques for giving three-dimensional form to idea. 1997. [6]H. Murray, “Industrial clays case study,” Mining, Miner. Sustain. Dev., vol. 1, no. 64, pp. 1–9, 2002, [Online]. Available: http://www.whitemudresources.com/public/Hayn Murray Clays Case Study.pdf%0Ahttp://whitemudresources.com/public/Hayn Murray ClaysCase Study.pdf. [7]Transparency Market Research, “Industrial Clay Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2016 - 2024,” New york, 2016.[8]J. Murphy, Additives for Plastics Handbook. Elsevier, 2001. [9]Y. Hong, J. J. Cooper-White, M. E. Mackay, C. J. Hawker, E. Malmström, and N. Rehnberg, “A novel processing aid for polymer extrusion: Rheology and processing of polyethylene and hyperbranched polymer blends,” J. Rheol. (N. Y. N. Y)., vol. 43, no. 3, pp. 781–793, 1999, doi: 10.1122/1.550999. [10]D. P. Rawski, P. Edwards, and U. States, “Pulp and Paper : Non fi brous Components,” no. January, pp.1–4, 2017, doi: 10.1016/B978-0-12-803581-8.10289-9. [11]J. Speight, “Instability and incompatibility of tight oil and shale oil,” Shale Oil Gas Prod. Process., pp. 915–942, 2020, doi: 10.1016/b978-0-12-813315-6.00017-8. [12]T. P. Brown, L. Rushton, M. A. Mugglestone, and D. F. Meechan, “Health effects of a sulphur dioxide air pollution episode,” vol. 25, no. 4, pp. 369–371, 2003,doi: 10.1093/pubmed/fdg083. [13]R. Chihi, I. Blidi, M. Trabelsi-Ayadi, and F. Ayari, “Elaboration and characterization of a low-cost porous ceramic support from natural Tunisian bentonite clay,” Comptes Rendus Chim., vol. 22, no. 2–3, pp. 188–197, 2019, doi: 10.1016/j.crci.2018.12.002. [14]Z. Yi, W. Xiaopeng, and L. I. Dongxu, “Prepartion of organophilic bentonite / paraffin composite phase change energy storage material with melting intercalation method,” pp. 126–131, 2011, doi: 10.4028/www.scientific.net/AMR.284-286.126. [15]I. Krupa and A. S. Luyt, “Thermal and mechanical properties of extruded LLDPE / wax blends,” vol. 73, pp. 157–161, 2001. [16]A. Saleem, L. Frormann, J. Koltermann, and C. Reichelt, “Fabrication and Processing of Polypropylene - Paraffin Compounds with Enhanced Thermal andProcessing Properties : Impact Penetration and Thermal Characterization,” vol. 40164, pp. 1–9, 2014, doi:10.1002/app.40164. [17]M. Mu, P. A. M. Basheer, W. Sha, Y. Bai, and T. Mcnally, “Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes,”Appl. Energy, vol. 162, pp. 68–82, 2016, doi: 10.1016/j.apenergy.2015.10.030. [18]M. Tovey, “Intuitive and objective processes in automotive design,” Des. Stud., vol. 13, no. 1, pp. 23–41, 1992, doi: 10.1016/0142-694X(92)80003-H. [19]J. Verlinden, A. Kooijman, E. Edelenbos, and C. Go, “Investigation on the use of illuminated clay in automotive styling,” 6th Int. Conf. Comput. Ind. Des.Concept. Des. (CAID&CD), Delft, NETHERLANDS, pp. 514–519, 2005. [20]N. W. Muhamad Bustaman and M. S. Abu Mansor, “A Study on CAD/CAM Application in CNC Milling Using Industrial Clay,” Appl. Mech. Mater., vol. 761, pp. 32–36, 2015, doi: 10.4028/www.scientific.net/AMM.761.32. [21]K. Shimokawa, Japan and the global automotive industry. 2010. [22]A. Bucio, R. Moreno tovar, L. Bucio, J. Espinosadávila, and F. Anguebes franceschi, “Characterization of beeswax, candelilla wax and paraffin wax for coatingcheeses,” Coatings, vol. 11, no. 3, pp. 1–18, 2021, doi: 10.3390/coatings11030261. [23]F. Valentini, A. Dorigato, A. Pegoretti, M. Tomasi, G. D. Sorarù, and M. Biesuz, “Si3N4 nanofelts/paraffin composites as novel thermal energy storage architecture,” J. Mater. Sci., vol. 56, no. 2, pp. 1537–1550, 2021, doi: 10.1007/s10853-020-05247-5. [24]F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, and C. Silva, “Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors,” J. Mater. Chem. C, vol. 3, pp. 10715–10722, 2015, doi: 10.1039/b000000x. [25]R. S. Hebbar, A. M. Isloor, B. Prabhu, Inamuddin, A. M. Asiri, and A. F. Ismail, “Removal of metal ions and humic acids through polyetherimide membranewith grafted bentonite clay,” Sci. Rep., vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-22837-1. [26]S. Betancourt-Parra, M. A. Domínguez-Ortiz, and M. Martínez-Tejada, “Colombian clays binary mixtures: Physical changes due to thermal treatments,” DYNA, vol. 87, no. 212, pp. 73–79, 2020, doi: 10.15446/dyna.v87n212.82285. [27]A. M. Rabie, E. A. Mohammed, and N. A. Negm, “Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic crackingprocess of biofuel production from nonedible vegetable oils,” J. Mol. Liq., vol. 254, no. 2018, pp. 260–266, 2018, doi: 10.1016/j.molliq.2018.01.110. [28]A. Kadeche et al., “Preparation, characterization and application of Fe-pillared bentonite to the removal of Coomassie blue dye from aqueous solutions,” Res. Chem. Intermed., vol. 46, no. 11, pp. 4985–5008, 2020, doi: 10.1007/s11164-020-04236-2. [29]C. I. R. De Oliveira, M. C. G. Rocha, A. L. N. DaSilva, and L. C. Bertolino, “Characterization of bentonite clays from Cubati, Paraíba Northeast of Brazil,” Ceramica, vol. 62, no. 363, pp. 272–277, 2016, doi:10.1590/0366-69132016623631970. [30]I. Z. Hager, Y. S. Rammah, H. A. Othman, E. M. Ibrahim, S. F. Hassan, and F. H. Sallam, “Nano-structured natural bentonite clay coated by polyvinyl alcohol polymer for gamma rays attenuation,” J. Theor. Appl. Phys., vol. 13, no. 2, pp. 141–153, 2019, doi: 10.1007/ s40094-019-0332-5. [31]A. Tebeje, Z. Worku, T. T. I. Nkambule, and J. Fito, “Adsorption of chemical oxygen demand from textile industrial wastewater through locally prepared bentonite adsorbent,” Int. J. Environ. Sci. Technol., no. 0123456789, 2021, doi: 10.1007/s13762-021-03230-4. [32]F. E. Özgüven, A. D. Pekdemir, M. Önal, and Y. Sarıkaya, “Characterization of a bentonite and its permanent aqueous suspension,” J. Turkish Chem. Soc.Sect. A Chem., vol. 7, no. 1, pp. 11–18, 2019, doi: 10.18596/jotcsa.535937. [33]S. Tao, S. Wei, and Y. Yulan, “Characterization of Expanded Graphite Microstructure and Fabrication of Composite Phase-Change Material for Energy Storage,” J. Mater. Civ. Eng., vol. 27, no. 4, p. 04014156, 2015, doi: 10.1061/(asce)mt.1943-5533.0001089. [34]M. Li, Z. Wu, H. Kao, and J. Tan, “Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material,” Energy Convers. Manag., vol. 52, no. 11, pp. 3275–3281, 2011, doi: 10.1016/j.enconman.2011.05.015. [35]S. M. Hosseini, E. Ghasemi, A. Fazlali, and D. E. Henneke, “The effect of nanoparticle concentration on the rheological properties of paraffin-based Co3O4 ferrofluids,” J. Nanoparticle Res., vol. 14, no. 7, 2012, doi: 10.1007/s11051-012-0858-9.
The automotive design process and the materials in the automotive industry in recent years has caused great interest to the industrial and academic sector. In this study was to evaluate the effect of the amount of bentonite on the thermal and rheological properties of the compound bentonite / paraffin wax. Two bentonite ratios were used: paraffin wax (40:60 and 30:70). The paraffin was characterized by Fourier transform infrared spectroscopy (FTIR), the bentonite was characterized by means of x-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray fluorescence (XRF). The bentonite/paraffine wax composite was characterized by differential-scanning calorimetry (DSC) and rheology. The sample that contains a higher amount of bentonite shows a lower latent heat, and this could cause a greater heat transfer. Finally, the sample that has a lower amount of bentonite evidenced a lower viscosity, and it could be related to a lower interaction between the particles. The sample S1 due to its lower latent heat compared to S2 could represent an interesting alternative to develop prototypingclays. since these materials are characterized by their low working temperatures and easy malleability. Keywords: automotive, prototyping, latent heat, bentonite, paraffin. References [1]X. Ferràs-Hernández, E. Tarrats-Pons, and N. Arimany-Serrat, “Disruption in the automotive industry: A Cambrian moment,” Bus. Horiz., vol. 60, no. 6, pp.855–863, 2017, doi: 10.1016/j.bushor.2017.07.011. [2]O. Heneric, G. Licht, S. Lutz, and W. Urban, “The Europerean Automotive Industry in a Global Context,” Eur. Automot. Ind. Move, pp. 5–44, 2005, doi: 10.1007/3-7908-1644-2_2. [3]S. I.-N. Delhi, “Automotive Revolution & Perspective Towards 2030,” Auto Tech Rev., vol. 5, no. 4, pp. 20–25, Apr. 2016, doi: 10.1365/s40112-016-1117-8.[4]M. Tovey, J. Owen, and P. Street, “in Automotive Design,” vol. 21, pp. 569–588, 2000. [5]Yasusato Yamada, Clay modeling : techniques for giving three-dimensional form to idea. 1997. [6]H. Murray, “Industrial clays case study,” Mining, Miner. Sustain. Dev., vol. 1, no. 64, pp. 1–9, 2002, [Online]. Available: http://www.whitemudresources.com/public/Hayn Murray Clays Case Study.pdf%0Ahttp://whitemudresources.com/public/Hayn Murray ClaysCase Study.pdf. [7]Transparency Market Research, “Industrial Clay Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2016 - 2024,” New york, 2016.[8]J. Murphy, Additives for Plastics Handbook. Elsevier, 2001. [9]Y. Hong, J. J. Cooper-White, M. E. Mackay, C. J. Hawker, E. Malmström, and N. Rehnberg, “A novel processing aid for polymer extrusion: Rheology and processing of polyethylene and hyperbranched polymer blends,” J. Rheol. (N. Y. N. Y)., vol. 43, no. 3, pp. 781–793, 1999, doi: 10.1122/1.550999. [10]D. P. Rawski, P. Edwards, and U. States, “Pulp and Paper : Non fi brous Components,” no. January, pp.1–4, 2017, doi: 10.1016/B978-0-12-803581-8.10289-9. [11]J. Speight, “Instability and incompatibility of tight oil and shale oil,” Shale Oil Gas Prod. Process., pp. 915–942, 2020, doi: 10.1016/b978-0-12-813315-6.00017-8. [12]T. P. Brown, L. Rushton, M. A. Mugglestone, and D. F. Meechan, “Health effects of a sulphur dioxide air pollution episode,” vol. 25, no. 4, pp. 369–371, 2003,doi: 10.1093/pubmed/fdg083. [13]R. Chihi, I. Blidi, M. Trabelsi-Ayadi, and F. Ayari, “Elaboration and characterization of a low-cost porous ceramic support from natural Tunisian bentonite clay,” Comptes Rendus Chim., vol. 22, no. 2–3, pp. 188–197, 2019, doi: 10.1016/j.crci.2018.12.002. [14]Z. Yi, W. Xiaopeng, and L. I. Dongxu, “Prepartion of organophilic bentonite / paraffin composite phase change energy storage material with melting intercalation method,” pp. 126–131, 2011, doi: 10.4028/www.scientific.net/AMR.284-286.126. [15]I. Krupa and A. S. Luyt, “Thermal and mechanical properties of extruded LLDPE / wax blends,” vol. 73, pp. 157–161, 2001. [16]A. Saleem, L. Frormann, J. Koltermann, and C. Reichelt, “Fabrication and Processing of Polypropylene - Paraffin Compounds with Enhanced Thermal andProcessing Properties : Impact Penetration and Thermal Characterization,” vol. 40164, pp. 1–9, 2014, doi:10.1002/app.40164. [17]M. Mu, P. A. M. Basheer, W. Sha, Y. Bai, and T. Mcnally, “Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes,”Appl. Energy, vol. 162, pp. 68–82, 2016, doi: 10.1016/j.apenergy.2015.10.030. [18]M. Tovey, “Intuitive and objective processes in automotive design,” Des. Stud., vol. 13, no. 1, pp. 23–41, 1992, doi: 10.1016/0142-694X(92)80003-H. [19]J. Verlinden, A. Kooijman, E. Edelenbos, and C. Go, “Investigation on the use of illuminated clay in automotive styling,” 6th Int. Conf. Comput. Ind. Des.Concept. Des. (CAID&CD), Delft, NETHERLANDS, pp. 514–519, 2005. [20]N. W. Muhamad Bustaman and M. S. Abu Mansor, “A Study on CAD/CAM Application in CNC Milling Using Industrial Clay,” Appl. Mech. Mater., vol. 761, pp. 32–36, 2015, doi: 10.4028/www.scientific.net/AMM.761.32. [21]K. Shimokawa, Japan and the global automotive industry. 2010. [22]A. Bucio, R. Moreno tovar, L. Bucio, J. Espinosadávila, and F. Anguebes franceschi, “Characterization of beeswax, candelilla wax and paraffin wax for coatingcheeses,” Coatings, vol. 11, no. 3, pp. 1–18, 2021, doi: 10.3390/coatings11030261. [23]F. Valentini, A. Dorigato, A. Pegoretti, M. Tomasi, G. D. Sorarù, and M. Biesuz, “Si3N4 nanofelts/paraffin composites as novel thermal energy storage architecture,” J. Mater. Sci., vol. 56, no. 2, pp. 1537–1550, 2021, doi: 10.1007/s10853-020-05247-5. [24]F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, and C. Silva, “Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors,” J. Mater. Chem. C, vol. 3, pp. 10715–10722, 2015, doi: 10.1039/b000000x. [25]R. S. Hebbar, A. M. Isloor, B. Prabhu, Inamuddin, A. M. Asiri, and A. F. Ismail, “Removal of metal ions and humic acids through polyetherimide membranewith grafted bentonite clay,” Sci. Rep., vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-22837-1. [26]S. Betancourt-Parra, M. A. Domínguez-Ortiz, and M. Martínez-Tejada, “Colombian clays binary mixtures: Physical changes due to thermal treatments,” DYNA, vol. 87, no. 212, pp. 73–79, 2020, doi: 10.15446/dyna.v87n212.82285. [27]A. M. Rabie, E. A. Mohammed, and N. A. Negm, “Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic crackingprocess of biofuel production from nonedible vegetable oils,” J. Mol. Liq., vol. 254, no. 2018, pp. 260–266, 2018, doi: 10.1016/j.molliq.2018.01.110. [28]A. Kadeche et al., “Preparation, characterization and application of Fe-pillared bentonite to the removal of Coomassie blue dye from aqueous solutions,” Res. Chem. Intermed., vol. 46, no. 11, pp. 4985–5008, 2020, doi: 10.1007/s11164-020-04236-2. [29]C. I. R. De Oliveira, M. C. G. Rocha, A. L. N. DaSilva, and L. C. Bertolino, “Characterization of bentonite clays from Cubati, Paraíba Northeast of Brazil,” Ceramica, vol. 62, no. 363, pp. 272–277, 2016, doi:10.1590/0366-69132016623631970. [30]I. Z. Hager, Y. S. Rammah, H. A. Othman, E. M. Ibrahim, S. F. Hassan, and F. H. Sallam, “Nano-structured natural bentonite clay coated by polyvinyl alcohol polymer for gamma rays attenuation,” J. Theor. Appl. Phys., vol. 13, no. 2, pp. 141–153, 2019, doi: 10.1007/ s40094-019-0332-5. [31]A. Tebeje, Z. Worku, T. T. I. Nkambule, and J. Fito, “Adsorption of chemical oxygen demand from textile industrial wastewater through locally prepared bentonite adsorbent,” Int. J. Environ. Sci. Technol., no. 0123456789, 2021, doi: 10.1007/s13762-021-03230-4. [32]F. E. Özgüven, A. D. Pekdemir, M. Önal, and Y. Sarıkaya, “Characterization of a bentonite and its permanent aqueous suspension,” J. Turkish Chem. Soc.Sect. A Chem., vol. 7, no. 1, pp. 11–18, 2019, doi: 10.18596/jotcsa.535937. [33]S. Tao, S. Wei, and Y. Yulan, “Characterization of Expanded Graphite Microstructure and Fabrication of Composite Phase-Change Material for Energy Storage,” J. Mater. Civ. Eng., vol. 27, no. 4, p. 04014156, 2015, doi: 10.1061/(asce)mt.1943-5533.0001089. [34]M. Li, Z. Wu, H. Kao, and J. Tan, “Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material,” Energy Convers. Manag., vol. 52, no. 11, pp. 3275–3281, 2011, doi: 10.1016/j.enconman.2011.05.015. [35]S. M. Hosseini, E. Ghasemi, A. Fazlali, and D. E. Henneke, “The effect of nanoparticle concentration on the rheological properties of paraffin-based Co3O4 ferrofluids,” J. Nanoparticle Res., vol. 14, no. 7, 2012, doi: 10.1007/s11051-012-0858-9.
This study focuses on the synthesis, characterization, and application of amphiphilic PCL-PEG-PCL/Bentonite-TBHSA (A2). The prepared of A2 nanocomposite was prepared from Algerian Bentonite modified by the intercalation of tetrabutylammonium hydrogen sulfate (TBHSA) (A1), were characterized by different techniques including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction(XRD), (TEM),(DSC) and thermogravimetric analysis (TGA ). The removal efficiency of of methylene blue, from aqueous solutions. The effects of the initial pH of a solution, contact time, and nanocomposite mass on the adsorption efficiency were investigated. Pseudo-first/second-order isotherms were applied to determine the efficiency of nanocomposite solid. The experimental data fitted well with the pseudo-second-order model for MB dye adsorption. The mass of nanocomposite increased, the adsorption capacity of dye increases to reach an optimal value at 0.13 g of adsorbent in pH = 6.8. The Langmuir isotherm exhibited the best fit, with an adsorption capacity equal to 600 mg/g .
This paper aims to present the recent results progress on diaminododecylphosphonic acid (DADTMTPA) as an extractant of cerium (III) from Ce(NO 3 ) 3 .6H 2 O solution medium. Different parameters including pH, temperature, extractant concentration, and foreign ions present in the aqueous phase were examined to investigate the extractional mechanism. The optimum conditions of solvent extraction of Ce(III) are as follows: under experimental conditions of 298 K and the initial concentration of Ce(III) being kept at 10 À 4 M at pH 3.50. The agitation duration of 5 min for a volume ratio equal to 2, and the best yield is 77 % in one-step. An increase in the temper-ature reduced the extraction process. The DADTMTPA extracts Ce(III) after the second cycle with a yield of 95 %. The extraction thermodynamic parameters such as ΔG, ΔH and ΔS are also determined and reported. On the other hand, density functional theory (DFT) based on B97D3 functional with 6-311 + + G(d,p) basis set analysis and molecular dynamics simulations were used to extremely fast methods at calculating the nonbonded interactions and to understand its properties of molecular interactions, which have proved to be an adopted and useful tool to predict and describe the chemical behavior of the evolution of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.