SUMMARYA flexible polypyrrole/graphene oxide/manganese oxide-based supercapacitor was prepared via an electrodeposition process. The polypyrrole, graphene oxide, and manganese oxide were deposited onto a flexible and highly porous nickel foam, which acted as a current collector to enhance the electrochemical performances. The good coverage of the polypyrrole, graphene oxide, and manganese oxide onto the scaffold of the nickel foam was evidenced using field emission scanning electron microscopy and X-ray diffraction. The manganese species, which were present in the oxidation states of Mn 3+ and Mn 4+ , were shown using X-ray photoelectron spectroscopy. The presence of Mn 2 O 3 and MnO 2 polymorphs was detected using Fourier transform infrared and Raman spectroscopies. The cyclic stability of the ternary supercapacitor was consistent regardless of its geometry and curvature. In contrast, an activated carbon supercapacitor possesses limited energy storage capability compared to a ternary supercapacitor, which suppresses the electrochemical performances of activated carbon. The ternary as-fabricated supercapacitor could retain a specific capacitance of 96.58% after 1000 cycles, and the as-synthesized energy storage device was able to light up a light emitting diode.