A strong cation-exchange separation material has been prepared from monodisperse divinylbenzene particles modified by a "grafting to" approach, utilizing as anchoring points epoxy groups introduced onto the surface of the particles via oxidation of residual vinyl groups. The grafted chains consisted of thiol-terminated telomers of sulfopropyl methacrylate prepared by iniferter mediated polymerization, and grafting was performed by reaction of the corresponding thiolate anion with the surface epoxy groups. Attachment through epoxy moieties that were subsequently converted into 2,3-propanediol groups increased the hydrophilicity of the polymeric particles and incubation experiments showed no signs of the proteins denaturing on the column during an extended contact time of 1 h at room temperature. The performance of the grafted material was demonstrated by the chromatographic separation of cytochrome C, lysozyme, myoglobin, and ribonuclease A, in a cation-exchange mode.