Eco-gelled coal gangue materials (EGCGMs) are usually produced using coal gangue, slag, and fly ash in a highly alkaline environment. Herein, to improve the mechanical properties of such materials, polypropylene fibers were uniformly mixed with them. An unconfined compressive strength test and a three-point bending test of the fiber-reinforced EGCGMs under different conditions were conducted. Based on the performance degradation control technology of the fiber structure, the interface mechanism of the composite materials was analyzed from the micro level using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). In the mechanical test, the 28 d UCS and flexural properties of the fiber-reinforced EGCGMs were analyzed using the Box–Behnken design response surface design method and orthogonal design method, respectively. The order of significance was as follows: sodium hydroxide, fiber length, and fiber content. Within the scope of the experimental study, when the NaOH content is 3, the fiber content is 5 ‰, and the fiber length is 9 mm, the mechanical properties are the best. Based on the microscopic equipment, it was discovered that the amorphous ecological glue condensation product formed by the reaction of slag and fly ash in the alkaline environment was filled between the coal gangue particles and the fibers, and several polymerization products accumulated to form a honeycomb network topology. The distribution of fibers in the EGCGM matrix could be primarily divided into single embedded and network occurrences. The fiber inhibits the crack initiation and development of the matrix through the crack resistance effect, and improves the brittleness characteristics through the bridging effect during the failure process, which promotes the ductility of the ecological cementitious coal gangue matrix.The results presented herein can provide a theoretical basis for improving the mechanical properties of alkali-activated geopolymers.