Recently, increasing evidence has suggested the association between gut dysbiosis and Alzheimer's disease (AD) progression, yet the role of gut microbiota in AD pathogenesis remains obscure. Herein, we provide a potential mechanistic link between gut microbiota dysbiosis and neuroinflammation in AD progression. Using AD mouse models, we discovered that, during AD progression, the alteration of gut microbiota composition leads to the peripheral accumulation of phenylalanine and isoleucine, which stimulates the differentiation and proliferation of pro-inflammatory T helper 1 (Th1) cells. The brain-infiltrated peripheral Th1 immune cells are associated with the M1 microglia activation, contributing to AD-associated neuroinflammation. Importantly, the elevation of phenylalanine and isoleucine concentrations and the increase of Th1 cell frequency in the blood were also observed in two small independent cohorts of patients with mild cognitive impairment (MCI) due to AD. Furthermore, GV-971, a sodium oligomannate that has demonstrated solid and consistent cognition improvement in a phase 3 clinical trial in China, suppresses gut dysbiosis and the associated phenylalanine/isoleucine accumulation, harnesses neuroinflammation and reverses the cognition impairment. Together, our findings highlight the role of gut dysbiosis-promoted neuroinflammation in AD progression and suggest a novel strategy for AD therapy by remodelling the gut microbiota.
Background Ferroptosis is a novel mode of non-apoptotic cell death induced by build-up of toxic lipid peroxides (lipid-ROS) in an iron dependent manner. Cancer-associated fibroblasts (CAFs) support tumor progression and drug resistance by secreting various bioactive substances, including exosomes. Yet, the role of CAFs in regulating lipid metabolism as well as ferroptosis of cancer cells is still unexplored and remains enigmatic. Methods Ferroptosis-related genes in gastric cancer (GC) were screened by using mass spectrum; exosomes were isolated by ultra-centrifugation and CAF secreted miRNAs were determined by RT-qPCR. Erastin was used to induce ferroptosis, and ferroptosis levels were evaluated by measuring lipid-ROS, cell viability and mitochondrial membrane potential. Results Here, we provide clinical evidence to show that arachidonate lipoxygenase 15 (ALOX15) is closely related with lipid-ROS production in gastric cancer, and that exosome-miR-522 serves as a potential inhibitor of ALOX15. By using primary stromal cells and cancer cells, we prove that exosome-miR-522 is mainly derived from CAFs in tumor microenvironment. Moreover, heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) was found to mediate miR-522 packing into exosomes, and ubiquitin-specific protease 7 (USP7) stabilizes hnRNPA1 through de-ubiquitination. Importantly, cisplatin and paclitaxel promote miR-522 secretion from CAFs by activating USP7/hnRNPA1 axis, leading to ALOX15 suppression and decreased lipid-ROS accumulation in cancer cells, and ultimately result in decreased chemo-sensitivity. Conclusions The present study demonstrates that CAFs secrete exosomal miR-522 to inhibit ferroptosis in cancer cells by targeting ALOX15 and blocking lipid-ROS accumulation. The intercellular pathway, comprising USP7, hnRNPA1, exo-miR-522 and ALOX15, reveals new mechanism of acquired chemo-resistance in GC. Graphical abstract
The metastatic organotropism has been one of the cancer's greatest mysteries since the ‘seed and soil' hypothesis. Although the role of EGFR in cancer cells is well studied, the effects of secreted EGFR transported by exosomes are less understood. Here we show that EGFR in exosomes secreted from gastric cancer cells can be delivered into the liver and is integrated on the plasma membrane of liver stromal cells. The translocated EGFR is proved to effectively activate hepatocyte growth factor (HGF) by suppressing miR-26a/b expression. Moreover, the upregulated paracrine HGF, which binds the c-MET receptor on the migrated cancer cells, provides fertile ‘soil' for the ‘seed', facilitating the landing and proliferation of metastatic cancer cells. Thus, we propose that EGFR-containing exosomes derived from cancer cells could favour the development of a liver-like microenvironment promoting liver-specific metastasis.
Three isomorphous compounds M(CHOO)3[NH2(CH3)2] (M = Mn(1 x Mn), Co(2 x Co), Ni(3 x Ni)) have been synthesized in solvothermal conditions. Single-crystal X-ray diffraction shows that they are all crystallized in the trigonal space group R c with small differences in the lattice parameters. Bridged by the three-atom single-bridge CHOO-, M ions form a three-dimensional distorted perovskite-like structure with dimethylamine (DMA) cations located in the cages of the network. Based on the magnetic data, these three 3D compounds are weak ferromagnets with the critical temperature Tc = 8.5 K (1 x Mn), 14.9 K (2 x Co), and 35.6 K (3 x Ni), and for 2 x Co and 3 x Ni, spin reorientation might take place at 13.1 and 14.3 K, respectively. At 1.8 K, hysteresis loops can be observed for all three compounds with the coercivity field ca. 90 Oe (1 x Mn), 920 Oe (2 x Co), and 320 Oe (3 x Ni). The canting angles are estimated to be 0.08 degrees, 0.5 degrees, and 0.6 degrees for 1 x Mn, 2 x Co, and 3.Ni, respectively. The magnetic coupling between MnII ions in 1.Mn was estimated based on the model developed by Rushbrook and Wood for a Heisenberg antiferromagnet on a simple cubic lattice and the best fit gives J = -0.23 cm(-1). At the same time, according to molecular field theory of antiferromagnetism, the J values for compounds 1 x Mn, 2 x Co, and 3 x Ni were estimated to be -0.32 cm(-1), -2.3 cm(-1), and -4.85 cm(-1), respectively. The spin cant in these compounds may originate from the noncentrosymmetric character of the three-atom single-bridge CHOO-. Furthermore, amorphous materials 4 x Mn238, 5 x Mn450, 6 x Co320, and 7 x Ni300 were prepared from precursors 1-3 under an argon atmosphere at different temperatures according to the thermogravimetric analyses. As an interesting result, 5 x Mn450 was confirmed to be an amorphous form of Mn3O4 with a considerably large coercivity field HC = 4.1 kOe at 30 K compared to that value (250 Oe) for bulk Mn3O4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.