The main deliberation of this review paper is on metallic catalysts, including Cu-based catalysts, with distinct formulations and compositions, utilized for steam reforming of methanol (SRM). The review critically examines the performance of these catalysts, considering the active components, supports, promoters, and their interactions. Additionally, the review identifies and elucidates the various kinds of reaction mechanisms and routes involved in SRM. This comprehensive analysis provides valuable insights into the progress of well-organized and effective catalysts for SRM. To achieve high yields of H2, it is crucial to conduct a fundamental study of the role of copper as a component in both mono and multimetallic systems, as well as the nature of support. These factors are essential to understand the catalytic mechanisms involved in the steam reforming of methanol and to develop effective strategies for optimizing hydrogen production. Therefore, a thorough investigation of copper-based catalysts and their interaction with the support material is essential for the development of highly efficient steam reforming processes.