High-entropy alloys (HEAs) contain multiple principal alloying elements, but usually with simple crystal structures. Quasicrystals are structurally complex phases, but are generally dominated by only one element. However, nearequiatomic high-entropy quasicrystals have rarely been reported because they are difficult to prepare experimentally and predict theoretically. Therefore, the preparation and crystal structures of near-equiatomic high-entropy quasicrystals have drawn much interest. We report a quinary decagonal quasicrystal (DQC) with near-equiatomic alloying elements in Al 20 Si 20 Mn 20 Fe 20 Ga 20 melt-spun ribbons, which is the first to our knowledge. Meanwhile, the structural features of the DQC are characterized in detail. The configurational entropy of both the alloy and DQC satisfies the entropy-based criterion for HEAs, suggesting a high-entropy DQC. Our findings provide a new strategy to develop high-entropy quasicrystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.