Phenol–formaldehyde resins were modified with carbazole in order to improve their thermal resistance. Attempts to incorporate carbazole rings into novolac and resol resins were made using three methods: (1) the addition of N‐(hydroxymethyl)carbazole (HMC) into a phenol–formaldehyde mixture, (2) the addition of carbazole into a phenol–hydroxymethyl derivative of acetone mixture, where the hydroxymethyl derivative of acetone was used as formaldehyde donor, and (3) by prolonging the time of high‐temperature reaction between phenol, carbazole and formaldehyde. The temperature and time of reaction were critical for incorporation of carbazole, which successfully led to highly temperature‐resistant carbazole‐modified novolacs for the latter procedure. When carbazole was incorporated into novolac structure at a level of 8 mol%, the thermal resistance increased by 118 °C measured as 5% mass loss temperature. Other procedures led to solids containing carbazole or HMC as physical admixtures. The obtained composites revealed variable thermal resistance effects; the carbazole‐modified resol containing 9 mol% of carbazole showed 47 °C increase of thermal resistance in comparison with non‐modified resol, measured as 5% mass loss temperature. © 2015 Society of Chemical Industry