Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Monoclonal antibodies have gained significant interest as potential therapeutics for treating various diseases. However, these therapies are not always effective due to poor treatment compliance associated with multiple administrations and drug resistance. Thus, there is a growing interest in developing advanced monoclonal antibody delivery systems that can customize pharmacokinetics to enhance therapeutic outcomes. This work aimed to engineer hydrolytic 4‐arm PEG maleimide (PEG‐4MAL) microgels for the controlled delivery of therapeutic antibodies, specifically anti‐angiogenic bevacizumab, to overcome the limitations of current monoclonal antibody therapies. Through a PEGylation reaction with a thiol‐terminated PEG linker, the antibody was covalently conjugated to the macromer backbone before microgel synthesis. The PEGylation reaction was simple, effective, and did not affect antibody bioactivity. Antibody release kinetics was tuned by changing the concentration of the hydrolytic linker (0–2 mM) and/or PEG‐4MAL:protein molar ratio (1000:1, 2000:1, and 5000:1) in the macromer precursor solution during microgel fabrication. The bioactivity of the released antibody was assessed on human umbilical endothelial vascular cells (HUVEC), demonstrating that extracts from hydrolytic microgels reduced cell proliferation over time. Collectively, this study demonstrates the development of highly tunable delivery platform based on degradable PEG‐4MAL microgels that can be adapted for therapeutic antibody‐controlled release.
Monoclonal antibodies have gained significant interest as potential therapeutics for treating various diseases. However, these therapies are not always effective due to poor treatment compliance associated with multiple administrations and drug resistance. Thus, there is a growing interest in developing advanced monoclonal antibody delivery systems that can customize pharmacokinetics to enhance therapeutic outcomes. This work aimed to engineer hydrolytic 4‐arm PEG maleimide (PEG‐4MAL) microgels for the controlled delivery of therapeutic antibodies, specifically anti‐angiogenic bevacizumab, to overcome the limitations of current monoclonal antibody therapies. Through a PEGylation reaction with a thiol‐terminated PEG linker, the antibody was covalently conjugated to the macromer backbone before microgel synthesis. The PEGylation reaction was simple, effective, and did not affect antibody bioactivity. Antibody release kinetics was tuned by changing the concentration of the hydrolytic linker (0–2 mM) and/or PEG‐4MAL:protein molar ratio (1000:1, 2000:1, and 5000:1) in the macromer precursor solution during microgel fabrication. The bioactivity of the released antibody was assessed on human umbilical endothelial vascular cells (HUVEC), demonstrating that extracts from hydrolytic microgels reduced cell proliferation over time. Collectively, this study demonstrates the development of highly tunable delivery platform based on degradable PEG‐4MAL microgels that can be adapted for therapeutic antibody‐controlled release.
Sphingan WL gum (WL) is an extracellular polysaccharide with a carboxyl group produced by Sphingomonas sp. WG. Recently, we have successfully obtained deacetylated WL (DWL) with good water solubility by alkaline treatment. In this study, a DWL-based microgel (named DWLM) with semi-interpenetrating network structure was constructed for the first time and used to deliver the oral drug ciprofloxacin hydrochloride (CIP). DLS results suggested that DWLM had a dual response to pH and temperature. The in vitro cumulative drug release curves showed that the amount of CIP released from the microgel was higher at pH 6.8 than that at pH 3.0. Biocompatibility assessments using HEK293T showed that cell viability was 75.9 ± 1.7% at the DWLM-CIP concentration of 4 mg/mL. While, the cell viability of CIP at the same concentration was only 54.9 ± 1.0%, indicating that DWLM-CIP has good biocompatibility. Antimicrobial performance tests revealed that DWLM-CIP at a concentration of 1 mg/mL could effectively inhibit the growth of Escherichia coli for up to 4 days. When the concentration of DWLM-CIP reached 4 mg/mL, the growth of Staphylococcus aureus was effectively suppressed for up to 3 days, demonstrating the long-lasting antimicrobial efficacy of DWLM-CIP. All of these results indicate that DWL-based microgels have great potential as oral drug delivery carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.