We report field electron emission investigations on pulsed laser-deposited molybdenum disulfide (MoS2) thin films on W-tip and Si substrates. In both cases, under the chosen growth conditions, the dry process of pulsed laser deposition (PLD) is seen to render a dense nanostructured morphology of MoS2, which is important for local electric field enhancement in field emission application. In the case of the MoS2 film on silicon (Si), the turn-on field required to draw an emission current density of 10 μA/cm(2) is found to be 2.8 V/μm. Interestingly, the MoS2 film on a tungsten (W) tip emitter delivers a large emission current density of ∼30 mA/cm(2) at a relatively lower applied voltage of ∼3.8 kV. Thus, the PLD-MoS2 can be utilized for various field emission-based applications. We also report our results of photodiode-like behavior in (n- and p- type) Si/PLD-MoS2 heterostructures. Finally we show that MoS2 films deposited on flexible kapton substrate show a good photoresponse and recovery. Our investigations thus hold great promise for the development of PLD MoS2 films in application domains such as field emitters and heterostructures for novel nanoelectronic devices.