Pendidikan merupakan aspek penting dalam kehidupan masyarakat dan memiliki peran yang sangat vital untuk menciptakan sumber daya manusia yang handal dan berkualitas dalam menghadapi berbagai tantangan pada era modernisasi. Namun, putus sekolah dan retensi siswa menjadi tantangan serius bagi perkembangan pendidikan saat ini. Salah satu faktor pemicu putus sekolah adalah kinerja akademik siswa yang rendah, mendorong perlunya tindakan pencegahan yang efektif untuk mengurangi tingkat kegagalan pendidikan. Penelitian ini bertujuan untuk memprediksi kinerja akademik siswa dengan mengintegrasikan metode Correlation-Based Feature Selection (CFS) dan Algoritma Naïve Nayes pada gabungan dataset pelajaran Matematika dan Bahasa Portugis dua sekolah menengah di Portugal. Proses preprocessing data melibatkan integrasi data, pelabelan data, transformasi data, dan pembersihan data diterapkan pada tahap awal penelitian. Hasil penelitian menunjukkan bahwa atribut signifikan yang mempengaruhi kinerja akademik siswa meliputi G2, G1, Higher, Medu, Studytime, goout, Absences, dan Failures. Melalui pemodelan algoritma Naïve Bayes, metode CFS terbukti meningkatkan nilai accuracy, recall, precision, dan f1-score dalam memprediksi kinerja akademik siswa. Sebelum CFS, model Naïve Bayes menunjukkan accuracy sebesar 89.27%, dengan recall, precision, danf1-score masing-masing sebesar 89.27%, 89.86%, dan 89.47%. Setelah implementasi CFS, evaluasi model prediksi mengalami peningkatan signifikan menjadi 91.22%, 91.22%, 92.24%, dan 91.48%.