Prostasomes are extracellularly occurring submicron, membrane-surrounded organelles produced by the epithelial cells of the prostate and present in semen after secretion. Even dedifferentiated prostate cancer cells have preserved their ability to produce and export prostasomes to the extracellular space. The precise physiological role of prostasomes is not known, although some of their properties assign them to important physiological and patho-physiological functions that could be exploited in prostate cancer growth and development. In this review, some new properties of seminal and malignant cell line (DU145, PC-3 and LNCaP) prostasomes will be discussed.There are typical differences in the expressions and activities of prostasomal CD59, ATPase, protein kinases and tissue factor (TF) as well as in the transfer of prostasomal CD59 to CD59-deficient erythrocytes (rabbit and human PNH erythrocytes). CD59, protein kinases and TF exhibit characteristic patterns of overexpression by malignant cell prostasomes. A high ATPase activity is recognized on seminal prostasomes with minimal activity on malignant cell prostasomes resulting in more residual ATP available for phosphorylation reactions. Several proteins are phosphorylated by prostasomal protein kinases, namely, complement component C3, fibrinogen, vitronectin and E-cadherin. Furthermore, TF is identified as the main endogenous phosphorylation substrate on prostasomes. In addition, prothrombotic effects of prostasomes are demonstrated. DU145 and PC-3 cell-derived prostasomes exert a higher clotting effect on whole blood and plasma compared to LNCaP cell-derived and seminal prostasomes.In conclusion, malignant cell prostasomes show an increased ability to interact with the biological system in favor of prostate cancer cell promotion and survival. The roles played by prostasomes in this context may improve the understanding of the mechanisms that help the prostate cancer cells to avoid the complement attack (CD59 transfer and phosphorylation and inactivation of C3), to promote angiogenesis (TF) and to metastasize. It may also provide a better understanding of some of the complications usually seen in some terminal prostate cancer patients like thrombotic events and tendency to develop disseminated intravascular coagulation.Keywords: ATPase, CD59, CK, complement, DU145, Extracellular phosphorylation, LNCaP, PC-3, PKA, PKC, prostasomes, prostate cancer, protein kinases, tissue factor.
I. GENERAL BACKGROUND
A. Prostate CancerProstate cancer is the most prevalent noncutaneous cancer in many of the Western countries and is the second leading cause of cancer death in men in USA [1]. The introduction of prostate specific antigen (PSA) in the latter half of 1980s as a biochemical marker of prostate cancer in serum signified a radical change of the pattern of prostate cancer diagnosis. It meant that more cases were detected at an early stage and substantially fewer at advanced stages [2] [3]. There are also studies showing that increasing incidence of prostate can...