The complement system as well as the coagulation system has fundamental clinical implications in the context of life-threatening tissue injury and inflammation. Associations between both cascades have been proposed, but the precise molecular mechanisms remain unknown. The current study reports multiple links for various factors of the coagulation and fibrinolysis cascades with the central complement components C3 and C5 in vitro and ex vivo. Thrombin, human coagulation factors (F) XIa, Xa, and IXa, and plasmin were all found to effectively cleave C3 and C5. Mass spectrometric analyses identified the cleavage products as C3a and C5a, displaying identical molecular weights as the native anaphylatoxins C3a and C5a. Cleavage products also exhibited robust chemoattraction of human mast cells and neutrophils, respectively. Enzymatic activity for C3 cleavage by the investigated clotting and fibrinolysis factors is defined in the following order: FXa > plasmin > thrombin > FIXa > FXIa > control. Furthermore, FXa-induced cleavage of C3 was significantly suppressed in the presence of the selective FXa inhibitors fondaparinux and enoxaparin in a concentration-dependent manner. Addition of FXa to human serum or plasma activated complement ex vivo, represented by the generation of C3a, C5a, and the terminal complement complex, and decreased complement hemolytic serum activity that defines exact serum concentration that results in complement-mediated lysis of 50% of sensitized sheep erythrocytes. Furthermore, in plasma from patients with multiple injuries (n = 12), a very early appearance and correlation of coagulation (thrombin–antithrombin complexes) and the complement activation product C5a was found. The present data suggest that coagulation/fibrinolysis proteases may act as natural C3 and C5 convertases, generating biologically active anaphylatoxins, linking both cascades via multiple direct interactions in terms of a complex serine protease system.
The mammalian complement system is a phylogenetically ancient cascade system that has a major role in innate and adaptive immunity. Activation of component C3 (1,641 residues) is central to the three complement pathways and results in inflammation and elimination of self and non-self targets. Here we present crystal structures of native C3 and its final major proteolytic fragment C3c. The structures reveal thirteen domains, nine of which were unpredicted, and suggest that the proteins of the alpha2-macroglobulin family evolved from a core of eight homologous domains. A double mechanism prevents hydrolysis of the thioester group, essential for covalent attachment of activated C3 to target surfaces. Marked conformational changes in the alpha-chain, including movement of a critical interaction site through a ring formed by the domains of the beta-chain, indicate an unprecedented, conformation-dependent mechanism of activation, regulation and biological function of C3.
The remarkable difference in success rates between clinical pancreas transplantation and islet transplantation is poorly understood. Despite the same histocompatibility barrier and similar immunosuppressive treatments in both transplantation procedures, human intraportal islet transplantation has a much inferior success rate than does vascularized pancreas transplantation. Thus far, little attention has been directed to the possibility that islets transplanted into the blood stream may elicit an injurious incompatibility reaction. We have tested this hypothesis in vitro with human islets and in vivo with porcine islets. Human islets were exposed to nonanticoagulated human ABO-compatible blood in surface-heparinized polyvinyl chloride tubing loops. Heparin and/or the soluble complement receptor 1 (sCR1) TP10 were tested as additives. Adult porcine islets were transplanted intraportally into pigs, and the liver was recovered after 60 min for immunohistochemical staining. Human islets induced a rapid consumption and activation of platelets. Neutrophils and monocytes were also consumed, and the coagulation and complement systems were activated. Upon histological examination, islets were found to be embedded in clots and infiltrated with CD11+ leukocytes. Furthermore, the cellular morphology was disrupted. When heparin and sCR1 were added to the blood, these events were avoided. Porcine islets retrieved in liver biopsies after intraportal islet allotransplantation showed a morphology similar to that of human islets perifused in vitro. Thus, exposure of isolated islets of Langerhans to allogenic blood resulted in significant damage to the islets, a finding that could explain the unsatisfactory clinical results obtained with intraportal islet transplantation. Because administration of heparin in combination with a soluble complement receptor abrogated these events, such treatment would presumably improve the outcome of clinical islet transplantation by reducing both initial islet loss and subsequent specific immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.