PURPOSE-To prospectively determine if pulsed arterial spin-labeling perfusion magnetic resonance (MR) imaging depicts regional cerebral hypoperfusion in subjects with Alzheimer disease (AD) and mild cognitive impairment (MCI), compared with perfusion in cognitively normal (CN) subjects, that is consistent with results of fluorodeoxyglucose (FDG) positron emission tomography (PET) and hexamethyl-propyleneamine oxime (HMPAO) single photon emission computed tomography (SPECT) studies of similar populations.MATERIALS AND METHODS-Institutional review board approval and informed consent were obtained. Twenty subjects with AD (13 men, seven women; mean age, 72.9 years), 18 with MCI (nine men, nine women; mean age, 73.3 years), and 23 CN subjects (10 men, 13 women; mean age, 72.9 years) underwent arterial spin-labeling and volumetric T1-weighted structural MR imaging. Perfusion images were coregistered to structural images, corrected for partial volume effects (PVEs) with information from the structural image to determine tissue content of perfusion voxels, and normalized to a study-specific template. Analyses of perfusion differences between groups, with and without corrections for PVEs, were performed on a voxel-by-voxel basis with a one-tailed fixedeffects analysis of covariance model adjusted for age. In addition, tests were performed with and without accounting for global perfusion.
RESULTS-The AD group showed significant regional hypoperfusion, compared with the CN group, in the right inferior parietal cortex extending into the bilateral posterior cingulate gyri (P < . 001), bilateral superior and middle frontal gyri (P < .001), and left inferior parietal lobe (P = .007). When PVEs from underlying cortical gray matter atrophy were accounted for, the AD group still showed hypoperfusion in the right inferior parietal lobe extending into the bilateral posterior cingulate gyri (P < .001) and left (P = .003) and right (P = .012) middle frontal gyri. With a more liberal voxel-level threshold of P < .01, the MCI group showed significant regional hypoperfusion relative to the CN group in the inferior right parietal lobe (P = .046), similar to the region of greatest significance in the AD group. CONCLUSION-Arterial spin-labeling MR imaging showed regional hypoperfusion with AD, in brain regions similar to those seen in FDG PET and HMPAO SPECT studies of similar populations; this hypoperfusion persists after accounting for underlying cortical gray matter atrophy.Results of neuropathologic studies suggest that evidence of Alzheimer disease (AD) may be present in the brain years or even decades prior to the onset of clinical symptoms (1,2). Currently, multiple potential therapies are being developed to attempt to halt or disrupt the disease process before neurons are irrevocably lost (3). Evaluation of the effectiveness of these potential treatments will be enhanced by identification of patients at the earliest stages of the disease and by the possibility of objectively measuring disease progression. Because of this,...