In this paper, we present a case study on the use of the normalized source strength (NSS) for interpretation of magnetic and gravity gradient tensors data. This application arises in exploration of nickel, copper and platinum group element (Ni‐Cu‐PGE) deposits in the McFaulds Lake area, Northern Ontario, Canada. In this study, we have used the normalized source strength function derived from recent high resolution aeromagnetic and gravity gradiometry data for locating geological bodies.
In our algorithm, we use maxima of the normalized source strength for estimating the horizontal location of the causative body. Then we estimate depth to the source and structural index at that point using the ratio between the normalized source strength and its vertical derivative calculated at two levels; the measurement level and a height h above the measurement level. To discriminate more reliable solutions from spurious ones, we reject solutions with unreasonable estimated structural indices.
This method uses an upward continuation filter which reduces the effect of high frequency noise. In the magnetic case, the advantage is that, in general, the normalized magnetic source strength is relatively insensitive to magnetization direction, thus it provides more reliable information than standard techniques when geologic bodies carry remanent magnetization. For dipping gravity sources, the calculated normalized source strength yields a reliable estimate of the source location by peaking right above the top surface.
Application of the method on aeromagnetic and gravity gradient tensor data sets from McFaulds Lake area indicates that most of the gravity and magnetic sources are located just beneath a 20 m thick (on average) overburden and delineated magnetic and gravity sources which can be probably approximated by geological contacts and thin dikes, come up to the overburden.