The Geological Survey of Canada has acquired aeromagnetic data over much of the Canadian landmass and continues to acquire data in support of geological mapping projects. With the evolution of aeromagnetic survey technology over the last 65 years, the GSC has defined, applied, and refined survey design, survey specifications, quality control procedures, post-processing standards, and publication products to ensure quality data acquisition and delivery.
A new application has been developed, based on geostatistical techniques of cokriging and conditional simulation, for the 3D inversion of gravity data including geologic constraints. The necessary gravity, density, and gravity-density covariance matrices are estimated using the observed gravity data. Then the densities are cokriged or simulated using the gravity data as the secondary variable. The model allows noise to be included in the observations. The method is applied to two synthetic models: a short dipping dike and a stochastic distribution of densities. Then some geologic information is added as constraints to the cokriging system. The results show the ability of the method to integrate complex a priori information. The survey data of the Matagami mining camp are considered as a case study. The inversion method based on cokriging is applied to the residual anomaly to map the geology through the estimation of the density distribution in this region. The results of the inversion and simulation methods are in good agreement with the surface geology of the survey region.
The magnetic signature of most kimberlite pipes is, at high magnetic latitudes, a circular anomaly. At lower magnetic latitudes, it becomes asymmetric; and at the magnetic equator, the anomaly is mostly negative. The shape of the anomaly is also influenced by the presence of remanent magnetization. For a vertical cylinder, the shape of the analytic signal of the magnetic field is nearly independent of field orientation and remanence and always results in a compact, almost circular anomaly. A simple pattern recognition technique, based on a firstorder regression over a moving window, between the analytic signal of the observed magnetic field and the theoretical analytic signal of a magnetic vertical cylinder is an effective tool to identify potential targets. Results where the correlation coefficient between the analytic signal and the theoretical analytic signal within a moving window are above a certain threshold are retained, and additional criteria can later be used to refine the target selection. The method's practical utility is demonstrated by applying it to three different sites. The first is a well-documented area located at high magnetic latitude (Ontario, Canada), the second is at low magnetic latitude (West Africa), and the last one is an area where many pipes have a negative magnetization (Lac de Gras, Canada). INTRODUCTION Kimberlites are the major source of the world's diamonds. Kimberlite is an ultrabasic igneous rock which can occur as sills, dikes, or pipes. Sills and dykes are rarely mined (Gerryts, 1967), and only one in a hundred pipes contains an economic deposit of diamonds (Brummer, 1978; Kamara, 1981). They are found within thick, Archean cratons and adjacent Proterozoic mobile belts (Mitchell, 1991). Pipes are carrot-shaped in
A B S T R A C TEuler deconvolution and the analytic signal are both used for semi-automatic interpretation of magnetic data. They are used mostly to delineate contacts and obtain rapid source depth estimates. For Euler deconvolution, the quality of the depth estimation depends mainly on the choice of the proper structural index, which is a function of the geometry of the causative bodies. Euler deconvolution applies only to functions that are homogeneous. This is the case for the magnetic field due to contacts, thin dikes and poles. Fortunately, many complex geological structures can be approximated by these simple geometries. In practice, the Euler equation is also solved for a background regional field. For the analytic signal, the model used is generally a contact, although other models, such as a thin dike, can be considered. It can be shown that if a function is homogeneous, its analytic signal is also homogeneous. Deconvolution of the analytic signal is then equivalent to Euler deconvolution of the magnetic field with a background field. However, computation of the analytic signal effectively removes the background field from the data. Consequently, it is possible to solve for both the source location and structural index. Once these parameters are determined, the local dip and the susceptibility contrast can be determined from relationships between the analytic signal and the orthogonal gradients of the magnetic field. The major advantage of this technique is that it allows the automatic identification of the type of source. Implementation of this approach is demonstrated for recent high-resolution survey data from an Archean granite-greenstone terrane in northern Ontario, Canada.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.