Erythrocytes are a convenient model to understand oxidative damage to the membranes induced by various xenobiotics. The objective of the present study was to investigate the propensity of atrazine to induce oxidative stress and its possible attenuation by vitamin E. Experimental animals were orally administered atrazine (300 mg kg(-1) body weight, daily) and vitamin E (100 mg kg(-1) body weight, daily) for a period of 7, 14, and 21 days. Erythrocyte membranes were prepared and analyzed for acetylcholinesterase (AChE) activity, lipid peroxidation (LPO), and lipid composition. Susceptibility of erythrocytes to atrazine exposure was further investigated in terms of morphological alterations by scanning electron microscopy (SEM). Results indicate that atrazine exposure caused a significant inhibition of AChE activity and induction of oxidative stress in terms of increased malondialdehyde (MDA) levels. Atrazine treatment significantly decreased total lipid, cholesterol, and phospholipid content of erythrocyte membranes. SEM revealed varying degrees of distortion depending on duration of atrazine exposure. However, administration of vitamin E ameliorated the oxidative stress and changes in the erythrocyte membranes induced by atrazine.