Background: Nanotechnology is gaining significant attention worldwide for cancer treatment. Nanobiotechnology encourages the combination of diagnostics with therapeutics, which is a vital component of a customized way to deal with the malignancy. Nanoparticles are being used as Nanomedicine which participates in diagnosis and treatment of various diseases including cancer. The unique characteristic of Nanomedicine i.e. their high surface to volume ratio enables them to tie, absorb, and convey small biomolecule like DNA, RNA, drugs, proteins, and other molecules to targeted site and thus enhances the efficacy of therapeutic agents. Objective: The objective of the present article is to provide an insight of several aspect of nanotechnology in cancer therapeutics such as various nanomaterials as drug vehicle, drug release strategies and role of nanotechnology in cancer therapy. Methods: We performed an extensive search on bibliographic database for research article on nanotechnology and cancer therapeutics and further compiled the necessary information from various articles into the present article. Results: Cancer nanotechnology confers a unique technology against cancer through early diagnosis, prevention, personalized therapy by utilizing nanoparticles and quantum dots.Nano-biotechnology plays an important role in the discovery of cancer biomarkers. Quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, gold nanowires etc. have been developed as a carrier of biomolecules that can detect cancer biomarkers. Nanoparticle assisted cancer detection and monitoring involves biomolecules like proteins, antibody fragments, DNA fragments, and RNA fragments as the base of cancer biomarkers. Conclusion: This review highlights various approaches of cancer nanotechnology in the advancement of cancer therapy.
Medicinal mushrooms are higher fungi with additional nutraceutical attributes having low fat content and a trans-isomer of unsaturated fatty acids along with high fibre content, triterpenes, phenolic compounds, sterols, eritadenine and chitosan. They are considered as the unmatched source of healthy foods and drugs. They have outstanding attractive taste, aroma and nutritional value, so are considered as functional food, which means they are beneficial to the body not only in terms of nutrition but also for improved health. Medicinal mushrooms and their extract have a large number of bioactive components called secondary metabolites. The presence of polysaccharide β-glucans or polysaccharide-protein complexes content in mushroom extract have great therapeutic applications in human health as they possess many properties such as anti-diabetic, anti-cancerous, anti-obesity, immunomodulatory, hypocholesteremia, hepatoprotective nature along with anti-aging. The present review focuses on the comprehensive account of the medicinal properties of various medicinal mushrooms. This will further help the researchers to understand the metabolites and find other metabolites as well from the mushrooms which can be used for the potential development of the drugs to treat various life-threatening diseases.
Autophagy is an important cellular self-digestion and recycling pathway that helps in maintaining cellular homeostasis. Dysregulation at various steps of the autophagic and endolysosomal pathway has been reported in several neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington disease (HD) and is cited as a critically important feature for central nervous system (CNS) proteostasis. Recently, another molecular target, namely transcription factor EB (TFEB) has been explored globally to treat neurodegenerative disorders. This TFEB, is a key regulator of autophagy and lysosomal biogenesis pathway. Multiple research studies suggested therapeutic potential by targeting TFEB to treat human diseases involving autophagy-lysosomal dysfunction, especially neurodegenerative disorders. A common observation involving all neurodegenerative disorders is their poor efficacy in clearing and recycle toxic aggregated proteins and damaged cellular organelles due to impairment in the autophagy pathway. This dysfunction in autophagy characterized by the accumulation of toxic protein aggregates leads to a progressive loss in structural integrity/functionality of neurons and may even result in neuronal death. In recent years TFEB, a key regulator of autophagy and lysosomal biogenesis, has received considerable attention. It has emerged as a potential therapeutic target in numerous neurodegenerative disorders like AD and PD. In various neurobiology studies involving animal models, TFEB has been found to ameliorate neurotoxicity and rescue neurodegeneration. Since TFEB is a master transcriptional regulator of autophagy and lysosomal biogenesis pathway and plays a crucial role in defining autophagy activation. Studies have been done to understand the mechanisms for TFEB dysfunction, which may yield insights into how TFEB might be targeted and used for the therapeutic strategy to develop a treatment process with extensive application to neurodegenerative disorders. In this review, we explore the role of different transcription factor-based targeted therapy by some natural compounds for AD and PD with special emphasis on TFEB.
The Hedgehog (Hh) signaling pathway is activated in many cancers and is a promising target for therapeutic development. Deletions in the receptor Patched (PTCH) or activating mutations in Smoothened (SMO) have been reported in basal cell carcinoma and medulloblastoma, but are largely absent in most tumor types. Therefore, the mechanism of pathway activation in most cancers, including hematological malignancies, remains unknown. In normal tissues, Hh pathway activation via PTCH/SMO causes an increase in the downstream transcriptional activator GLI1 and a decrease in the GLI3 transcriptional repressor (GLI3R). In this article, we confirm that the Hh pathway is active in acute myeloid leukemia (AML), however, this activity is largely independent of SMO. Epigenetic and gene expression analysis of The Cancer Genome Atlas AML data set reveals that expression is silenced in most AML patient samples, and the GLI3 locus is abnormally methylated. We show that GLI3R is required for the therapeutic effect of SMO antagonists in AML samples and restoration of GLI3R suppresses the growth of AML. We additionally demonstrate that GLI3R represses AML growth by downregulating AKT expression. In summary, this study provides the first evidence that GLI3R plays an essential role in SMO-independent Hh signaling in AML, and suggests that GLI3R could serve as a potential biomarker for patient selection in SMO antagonist clinical trials. Furthermore, these data support rational combinations of hypomethylating agents with SMO antagonists in clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.