2001
DOI: 10.1080/12506559.2001.9737561
|View full text |Cite
|
Sign up to set email alerts
|

Préservation de l'orientation et convergence de Newton-Raphson avec le modèle hyperélastique compressible de Blatz-Ko

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0
5

Year Published

2003
2003
2007
2007

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 5 publications
(8 citation statements)
references
References 6 publications
0
3
0
5
Order By: Relevance
“…Secondly, by using the updated load step value, the Newton-Raphson procedure is restarted to solve the hyperelastic problem (Step 6). This algorithm is also available if the arc length method is used [15]. Since the algorithm described above depends only on the eigenvalues of the deformation gradient F, it can be applied to any geometry, boundary condition, applied load and material property.…”
Section: Fig 1 Surface Turning Inside Outmentioning
confidence: 99%
See 2 more Smart Citations
“…Secondly, by using the updated load step value, the Newton-Raphson procedure is restarted to solve the hyperelastic problem (Step 6). This algorithm is also available if the arc length method is used [15]. Since the algorithm described above depends only on the eigenvalues of the deformation gradient F, it can be applied to any geometry, boundary condition, applied load and material property.…”
Section: Fig 1 Surface Turning Inside Outmentioning
confidence: 99%
“…By using eigenvalues instead of the determinant, this algorithm can deal with any geometrical case (volume, area or line) while the classical condition based on the determinant only works for preserving volumes. By considering the Blatz-Ko hyperelastic model [2], this algorithm has already been found efficient for various geometrical cases, boundary conditions and applied loads [13,15]. The aim of this paper is to establish the fact that this algorithm, previously applied to the single case of the Blatz-Ko hyperelastic model, is indeed efficient for any kind of behavior laws.…”
mentioning
confidence: 97%
See 1 more Smart Citation
“…Dans (Peyraut et al, 2001 ;Peyraut, 2003aet Peyraut et al, 2003b, il a été établi qu'il existe des conditions analytiques permettant une convergence optimale en relation avec la préservation de l'orientation. Cependant, ces conditions ne sont valables que pour les cas particuliers étudiés (cube en compression dans un container rigide, sphère sous pression hydrostatique, éprouvette en compression simple).…”
Section: Implémentation D'une Condition Optimale De Préservation De Lunclassified
“…Par ailleurs, dans le cas particulier du modèle compressible de Blatz-Ko (Blatz et al, 1962), la perte d'ellipticité des équations d'équilibre entraîne des difficultés numériques à proximité des valeurs critiques de chargement (Wineman et al, 1995). Enfin, les problèmes de convergence de l'algorithme de Newton-Raphson en liaison avec le modèle de Blatz-Ko et le principe de préservation de l'orientation ont été abordés dans (Peyraut et al, 2001).…”
Section: Introductionunclassified