2003
DOI: 10.1029/2000wr000080
|View full text |Cite
|
Sign up to set email alerts
|

Pressure drawdown well tests in fractured porous media

Abstract: [1] A general three-dimensional numerical model for single-phase, slightly compressible flow through fractured porous media is introduced. It is based on a discrete fracture representation. Applications to the simulation of pressure drawdown well tests are presented, for complex situations where the well intercepts a random fracture network with various fracture densities and conductivities. The well pressure response can be modeled as a function of its interconnectivity with the fracture network.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
24
0
2

Year Published

2004
2004
2016
2016

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 37 publications
(26 citation statements)
references
References 28 publications
0
24
0
2
Order By: Relevance
“…The article by Bogdanov et al (2003) is also significant to be mentioned here. They have used a three-dimensional single-phase numerical model based on a discrete fracture representation to simulate pressure transient tests in discretely and randomly fractured reservoirs.…”
Section: Sugar Cube Representation Actual Reservoirmentioning
confidence: 98%
See 1 more Smart Citation
“…The article by Bogdanov et al (2003) is also significant to be mentioned here. They have used a three-dimensional single-phase numerical model based on a discrete fracture representation to simulate pressure transient tests in discretely and randomly fractured reservoirs.…”
Section: Sugar Cube Representation Actual Reservoirmentioning
confidence: 98%
“…Since 1960s a considerable amount of work, as referenced above, has been done on faulted and fractured reservoirs, including analytical, semianalytical, and numerical solutions for both finite and infinite fault and fracture conductivities. On the other hand, there are very few pressure transient solutions available for discretely faulted and fractured reservoirs with an arbitrary number and position of conductive faults and/or fractures (Bogdanov et al 2003). For simplicity, we call reservoirs containing an arbitrary distribution of finite-and/or infinite-conductivity faults and/or fractures discretely fractured network (DFN) or discretely fractured reservoirs.…”
Section: Mathematical Models For Reservoirs With Discrete Fractures Amentioning
confidence: 99%
“…Il est cependant difficile de déterminer la taille minimale du VER et de montrer qu'elle vérifie le critère de validité de l'approche. Ceci requiert typiquement un appareillage important faisant intervenir plusieurs puits d'observations positionnés à différentes distances et orientations par rapport à la source (Wang et al, 2002 Le développement récent des modèles numériques discrets procure un nouvel essor à cette approche (Cacas et al, 1990 ;Nordqvist et al, 1992 ;lourde et al, 2002aet 2002b, rendu possible notamment par l'augmentation de la capacité de calcul d'ordinateurs pouvant supporter les maillages complexes requis pour le développement de modèles tridimensionnels aux éléments finis (Therrien et Sudicky, 1996 ;Bogdanov et al, 2003 Andersson, 1989 ;Fanay-Augères, France, Cacas et al, 1990 ; Rosemanowes, Royaume-Uni, Olkiluoto, Finland, Vaittinen et Ahokas, 2004 ;projet SKB, Suède, Ludvigson et al, 2004).…”
Section: Modèles Continus Versus Modèles Discretsunclassified
“…Ces codes sont aussi utilisés de manière expérimentale dans le cadre de simulations stochastiques sur des réseaux synthétiques visant à analyser les relations entre les propriétés géométriques et les propriétés hydrauliques locales et globales d'un réseau de fractures bidimensionel et tridimensionnel (Jourde et al, 2002b ;Bogdanov et al, 2003). La présente étude s'inscrit dans ce type de démarche.…”
Section: Modèles Continus Versus Modèles Discretsunclassified
“…[7] Flow of compressible and slightly compressible fluids (water or oil) in fractured reservoirs has been studied extensively with applications in prediction of production rates and well testing [Warren and Root 1963;Kazemi et al, 1976;Zimmerman et al, 1993Zimmerman et al, , 1996Civan and Rasmussen, 2002;Penuela et al, 2002;Bogdanov et al, 2003;Lu and Connel, 2007;van Heel et al, 2008;Mora and Wattenbarger, 2009;Hassanzadeh et al, 2009;Ranjbar and Hassanzadeh, 2010;Mourzenko et al, 2011;Ranjbar et al, 2012;Ye and Ayala, 2012]. As an example, Hoteit and Firoozabadi [2005] developed a discrete fracture model to simulate the flow of compressible fluids in homogeneous, heterogeneous and fractured porous media.…”
Section: Introduction and Previous Studiesmentioning
confidence: 99%