Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Asphaltenes flow in equilibrium with the liquid phase as other components of the produced hydrocarbon. If asphaltenes are in solution during production, there are not negative impact to well productivity. However, asphaltenes could precipitate as pressure, temperature and composition change. If precipitated, due to pressure decrease, asphaltene could deposit as a solid phase in the formation rock near wellbore becoming an obstruction to flow and inducing formation damage. Skin due to asphaltene deposition near wellbore was confirmed in several wells of a carbonate reservoir. Asphaltene deposition was also observed in the production tubing. The objective of this work is to investigate the main variables affecting asphaltene deposition in the Magwa-Marrat field is South East Kuwait and develop a technique to manage and/or decrease formation damage due to this solid deposition phenomena. In order to estimate the skin value and predict the location of any impairment to production, a pressure gauge was set at 1,000 ft above the top of the perforations and the well was equipped with a permanent multiphase meter device. A series of pressure buildup tests and multi-rate tests were run to disseminate Darcy skin from non-Darcy skin. Pressure transient analysis (PTA) delivered total abnormal pressure losses from the formation near wellbore to the gauge location, while multi-rate tests (MRT) allowed to investigate rate dependent skin. Well tests at different rates were also run to investigate the relationship between fluid velocity and asphaltene deposition. Once the elements of total skin were split into Darcy skin and Non-Darcy skin, a tubing clean-out and a stimulation job were designed and implemented to eliminate the asphaltene deposits and remove the damage. Total skin was reduced from +30 to −3.5 and productivity index was increased by a factor greater than ten (10). The production rate to mitigate asphaltene deposition was successfully determined. The well has been on production for about 1 year without developing any additional damage and without further deposition of asphaltene in the production tubing as the well has been flown above the minimum flow velocity that would allow asphaltene deposition. A combination of well intervention combined with determination of operating conditions have been developed to successfully produced asphaltenic hydrocarbons at flowing bottom hole pressure (FBHP) below asphaltene onset pressure (AOP). This methodology has been successfully implemented. If the liquid velocity is high enough to carry precipitated asphaltene out, solid deposits are not observed and there is not harm to productivity. The technique has worked for a case where reservoir pressure has been depleted below asphaltene onset pressure (AOP). This is a fundamental change in the globally applied industry approach that urges to produce asphaltenic hydrocarbons at FBHP above AOP.
Asphaltenes flow in equilibrium with the liquid phase as other components of the produced hydrocarbon. If asphaltenes are in solution during production, there are not negative impact to well productivity. However, asphaltenes could precipitate as pressure, temperature and composition change. If precipitated, due to pressure decrease, asphaltene could deposit as a solid phase in the formation rock near wellbore becoming an obstruction to flow and inducing formation damage. Skin due to asphaltene deposition near wellbore was confirmed in several wells of a carbonate reservoir. Asphaltene deposition was also observed in the production tubing. The objective of this work is to investigate the main variables affecting asphaltene deposition in the Magwa-Marrat field is South East Kuwait and develop a technique to manage and/or decrease formation damage due to this solid deposition phenomena. In order to estimate the skin value and predict the location of any impairment to production, a pressure gauge was set at 1,000 ft above the top of the perforations and the well was equipped with a permanent multiphase meter device. A series of pressure buildup tests and multi-rate tests were run to disseminate Darcy skin from non-Darcy skin. Pressure transient analysis (PTA) delivered total abnormal pressure losses from the formation near wellbore to the gauge location, while multi-rate tests (MRT) allowed to investigate rate dependent skin. Well tests at different rates were also run to investigate the relationship between fluid velocity and asphaltene deposition. Once the elements of total skin were split into Darcy skin and Non-Darcy skin, a tubing clean-out and a stimulation job were designed and implemented to eliminate the asphaltene deposits and remove the damage. Total skin was reduced from +30 to −3.5 and productivity index was increased by a factor greater than ten (10). The production rate to mitigate asphaltene deposition was successfully determined. The well has been on production for about 1 year without developing any additional damage and without further deposition of asphaltene in the production tubing as the well has been flown above the minimum flow velocity that would allow asphaltene deposition. A combination of well intervention combined with determination of operating conditions have been developed to successfully produced asphaltenic hydrocarbons at flowing bottom hole pressure (FBHP) below asphaltene onset pressure (AOP). This methodology has been successfully implemented. If the liquid velocity is high enough to carry precipitated asphaltene out, solid deposits are not observed and there is not harm to productivity. The technique has worked for a case where reservoir pressure has been depleted below asphaltene onset pressure (AOP). This is a fundamental change in the globally applied industry approach that urges to produce asphaltenic hydrocarbons at FBHP above AOP.
The Burgan Marrat Reservoir is a challenging high-pressure, high-temperature carbonate oil reservoir dating back to the Jurassic age. This specific reservoir within the Burgan Field yields light oil, but it has a significant issue with Asphaltene deposition in the wellbore. Additionally, its well productivity is hampered by low matrix permeability. Addressing these challenges is crucial, and a successful acid fracturing process can not only enhance well productivity but also address Asphaltene-related problems. This study delves into a comprehensive methodology that was employed. The focus of well selection was on ensuring good well integrity and maintaining a considerable distance from the oil-water contact (OWC). The approach involved conducting a Multi-Rate test followed by pressure build-up to establish a baseline for understanding the reservoir's behavior, including darcy and non-darcy skin. The treatment design aimed at better fluid loss control and initiating highly conductive fractures in the reservoir. Specific measures, such as using suitable diverters and acid, were employed to maximize the length of the fractures. To validate the approach, a nodal analysis model was fine-tuned to predict how the well would perform under these conditions. The results post-stimulation were impressive. There was a substantial improvement in well production and flowing bottom hole pressure. In fact, the productivity index of the well increased significantly, representing a substantial enhancement in output. The pressure build-up test after the fracture demonstrated a linear flow within the fracture, indicating a successful treatment with a fracture half-length of approximately 110 feet and a negative skin, which signifies an improvement in flow efficiency. Furthermore, the treatment effectively mitigated the risk associated with Asphaltene deposition, a significant accomplishment given the historical challenges faced in this reservoir. This success can be attributed to an innovative workflow that incorporated a meticulous surveillance plan, a well-thought-out fracturing treatment design, and the application of advanced nodal analysis. Together, these components not only optimized the well's performance but also paved the way for the development of similar high-pressure, tight carbonate reservoirs. This approach not only enhances productivity but also ensures successful mitigation of Asphaltene-related issues, marking a significant advancement in reservoir engineering techniques.
A huge amount of sensors data is daily being generated from a single well site, posing challenges for data transmission, storage and analysis. Marrat reservoir is deep carbonate reservoirs in Greater Burgan Oilfield and is prone to asphaltene deposition. The present study leverages Edge computing technology which may revolutionize data processing, analysis, and algorithm-based decision making to enhance well performance in a cost-effective manner. This case study illustrates a pilot project of an on-prem edge computing infrastructure. The project particularly focuses on monitoring well performance and tackling asphaltene problems. The utilization of edge computing in this context introduces two outstanding solutions: the virtual flow meter (VFM) and asphaltene problem detection module. The VFM solution is based on a combination of data-driven and physics workflows. While the Asphaltene module quantifies the asphaltene risk by utilizing fluid data and asphaltene precipitation envelope for well operating conditions. Numerous physical well tests and fluid sampling have been carried out to validate both the solutions. The data-driven Virtual flow meter (VFM) has demonstrated a very high model accuracy over the test period, which signifies the reliability and potential of edge computing in the field. This solution seeks to estimate flow rates without the need for conventional flow meters, resulting in optimizing the frequency of wells production measurements and operating expenses. Through the estimation of real-time flow rates and asphaltene risk, a proactive wellbore clean-out jobs could be run to prevent any production losses due to asphaltene blockages. This study shows an opportunity of field scale implementation, which potentially will help in managing and optimizing reservoir performance. The edge computing technology provides an innovative approach which enables a real-time access to all the pertinent well information. The developed modules can be reliably used to identify potential well issues for early resolution and avoid significant production deferral. Asphaltene detection module will not only reduce the downtime but also deliver insights for production assurance, reservoir management and field development planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.