<p><strong>Abstract.</strong> This paper provides an overview of oil spill scenarios and the remote sensing methods used for detection and mapping the spills. It also discusses the different kinds of thermal sensors used in oil spills detection. As UAS is becoming an important player in the oil and gas industry for the low operating costs involved, this research involved working with a cheap thermal airborne sensor mounted on DJI Phantom 4 system. Data were collected in two scenarios, first scenario is collecting data in Michigan’s Upper Peninsula at a petroleum company location and the second scenario was an indoor experiment simulating an offshore spill. The aim of this research is to inspect the capability of Lepton LWIR inexpensive sensor to detect the areas contaminated with oil. Data processing to create classification maps involved using ArcGIS 10.5.1, ERDAS Imagine 2015 and ENVI 5.3. Depending accuracy assessment (confusion matrices) for the classified images and comparing classified images with ground truth, results shows the Lepton thermal sensor worked well in differentiating oil from water and was not a good option when there are many objects in the area of interest. Future research recommendations and conclusions are presented.</p>
The Magwa-Marrat field started production early 1984 with an initial reservoir pressure of 9,600 psia Thirty-six (36) producer wells have been drilled until now. By 1999, when the field had accumulated ~92 MMSTB of produced oil and the reservoir pressure had declined to ~8000 psia, the field was shut-in until late 2003 due to concerns on asphaltene deposition in the reservoir that could cause irreversible damage and total recovery losses. The field was restarted in 2003 an it has been in production since then. By April 2018 the field had produced 220 MMSTBO, with the average reservoir pressure declined to 6,400 psia. As crude oil has been produced and the energy of the reservoir has depleted, the equilibrium of its fluid components has been disturbed and asphaltenes have precipitated out of the liquid phase and deposited in the production tubing. There is a concern that the reservoir will encounter asphaltene problems as the reservoir pressure drops further. The objective of this manuscript is to present the process to understand the reservoir fluids behavior as it relates to asphaltenes issues and develop a work frame to recognize and mitigate the risk of plugging the reservoir rock due to asphaltenes deposition with the end purpose of maximizing recovery while producing at the maximum field potential Data acquired during more than 30 years have been integrated and analyzed including 22 AOP measurements using gravimetric and solid detection system techniques, 17 PVT lab reports, 1 core- flooding study and 1 permeability/wettability study. Despite the wide range of AOP measured in different labs, it was possible to determine that the AOP for the Magwa-Marrat fluid is 5,600 ±500 psia and the saturation pressure is 3,200 ±200 psia. Results of this fluids review study indicates that it might be possible to deplete the reservoir pressure below the AOP while producing at high rates. Additional field testing and lab research have been proposed to 1) establish an adequate operating envelop for each well to optimize production and mitigate asphaltene deposition in the tubing to decrease downtime due to coiled tubing cleanouts which will reduce OPEX, 2) Support determination of a suitable reservoir pressure depletion to minimize CAPEX by implementing a pressure support project at an optimum reservoir pressure, and 3) Establish an appropriate field development strategy to produce the field at its maximum potential without jeopardizing the health of the reservoir while optimizing ultimate recovery
Sound development plans are based on complex 3-D 3-Phase multimillion grid reservoir simulation models. These models are used to run different scenarios where probability distributions are included to understand the impact of uncertainties and mitigate main risks that could raise during the life of the field. With today's available dominant supercomputers, reservoir engineers have the tendency to undervalue the power of classical reservoir engineering. However, in a fully connected reservoir tank that honors the basis of the material balance equation, material balance technique has been long recognized as a powerful tool for interpreting and predicting reservoir performance by estimating initial hydrocarbon in place and ultimate hydrocarbon recovery under various depletion scenarios. In brief, under the right conditions, material balance technique is a suitable tool for field development planning. The power of material balance to predict long term performance is undisputable, especially in the case of a prevailing uncertainty. This is the case of the Magwa-Marrat field, where the development plan has historically been driven by the potential risk of asphaltene deposition in the reservoir. The objective of this paper is to show a step by step process to integrate data to build a reliable model using material balance and how this model is utilized to progress a field development plan capable of managing uncertainty and provide the tools to mitigate risk. Pressure data is obtained from repeat formation tester (RFT), static data from shut-in pressures and reservoir superposition pressures from pressure transient analysis. The average reservoir fluids properties are retrieved from a compositional equation of state based on circa 20 PVT studies. The material balance model was successfully completed, and the resulting stock tank oil initially in place (STOOP) was compared to volumetric calculations. Solution gas, rock compaction and aquifer influx were determined as drive mechanisms. The Campbell Plot, diagnostic tool, was proven to be prevailing defining early energy to determine STOOIP and the aquifer properties were calculated by matching the distal energy The material balance model was then used to run different development strategies. This methodology captured the impact of depleting the reservoir down to Asphaltene Onset Pressure (AOP) as well as below AOP. The model was also used to define the requirements for water injection rates and startup of a water flooding project for pressure support. Additionally, the material balance work was implemented to support reservoir management and to maximize recovery factor. This paper presents an innovative approach of integrating asphaltene behavior from laboratory tests and fluid studies, combined with material balance to screen development scenarios for an efficient depletion plan including water injection to manage asphaltene risks and optimize ultimate recovery. Finally, a fully ground-breaking strategy, not reported earlier to the knowledge of the authors, has been established to manage the perceived main risk in the Magwa-Marrat reservoir.
Magwa-Marrat reservoir fluid is an asphaltenic hydrocarbon, exhibiting precipitation and deposition of asphaltene in the production system including the reservoir rock near wellbore and the tubing. The main objective of this work was to optimize production in Magwa-Marrat wells by remediation of tubing plugging and formation damage. Well interventions were prioritized based on potential production benefit resulting from the removal of productivity impairment. It was required to understand current formation damage in all wells, including those without recent pressure transient analysis (PTA). All PTA tests since 1983 for Magwa-Marrat reservoir were analyzed to determine the different reservoir parameters such as flow capacity (KH), Skin (S), reservoir boundaries, and the extrapolated reservoir pressure (P*). PTA derived permeability was compared to log derived permeability to quality control skin determination. Independently formation damage was estimated using the radial form of the solution of the diffusivity equation for pseudo steady state flow. Once a skin correlation for both PTA vs. Darcy's law equation was derived using out of date well performance, the formation damage for all wells was accessed using current productivity index to identify production optimization opportunities in wells without recent PTA. This work was combined with nodal analysis to separate vertical lifting performance and inflow performance relationship impact on total productivity detriment. Cross plot of PTA derived flow capacity (Kh) vs. Log derived Kh correlates very well with a slope and a coefficient of correlation close to 1.0. This was observed for wells located in the reservoir where there are not heterogeneities near wellbore such as boundaries or natural fractures. For these cases the higher than normally observed estimated skin explained poorer well productivity. After skin values were accessed for all wells, a production gain was estimated, and the wells were ranked based on potential benefit. A stimulation campaign was put in place based on the type of rock, formation damage and vertical lifting performance. Eight (8) wells were stimulated and they delivered approximately an additional 20% production for the field. This work was innovative in the sense that there was not pressure build up tests run prior to the interventions and such, there was not any production deferral. This was achieved by building the well performance understanding on a correlation that required petrophysical description, production rates and estimates of drainage area reservoir pressure.
A comprehensive numerical and analytical assessment of water coning in a heavy oil field in Northern Kuwait is presented in this study. Several wells were investigated in light of possible coning affect. Based on the lessons learned from the field data and modeling efforts, a coning envelope is generated and possible mitigation actions are explored. The complex geologic and stratigraphic architecture of the reservoir with underlying oil-water contact presents a unique challenge to achieve water-free oil production in this field. The field produces average 150 API crude of 50-100 cp at 100° F. Production data from wells from different structural locations were history-matched using numerical simulations on single well models (including type well models). Model runs were extended to estimate critical liquid rate to avoid coning. Additionally, critical rates assessed from several analytical models were compared against those from the numerical simulations. Critical liquid production rates for different areas of the field have been assessed based on the coning envelope generated. Further works showed that the critical rate is also a strong function of operational, reservoir and fluid parameters as well as completions standoff from current oil-water contact (OWC). Since the current oil API is very close to that of water, the critical rate is not a strong function of the density difference of the reservoir fluids, however, difference in the fluid viscosities displayed a some degree of impact on the coning rate. Operational results also showed that average of 15 ft standoff from the existing OWC is critical to avoid imminent coning. This presents an important opportunity for efficient completion decisions of a candidate well. The most significant new finding is that two analytical models evaluated during this study indicated that these models have limited capability to assess the critical rate from the heavy oil reservoir, and appear to have high degree of sensitivity to oil viscosity. This paper provides an integrated approach to assess and manage water cone in a heavy oil recovery project. Generated coning envelope provides a tool for a proactive strategy for rate management including opportunities for strategic well completion decisions. Another noteworthy assessment is that the existing analytical models have significantly limited capability to model water coning behavior in a heavy oil reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.