A cable-stiffened steel column (CSSC) possesses superior stability behaviour compared to ordinary compression columns. In the past, the research emphasis has focused on the behaviours of stiffened columns under axial compression; investigations into their behaviour under eccentric loading is scant. This study aims to examine the buckling behaviour of CSSCs under eccentric loading using experimental and numerical investigations. The effects of pretension in cables and eccentricity on stability behaviours were studied. According to the current investigation, it can be demonstrated that the capacities of CSSCs are higher than those of ordinary compression columns. It has also been illustrated that both the buckling loads and modes of CSSCs can be changed by changing the load eccentricity; however, the modes of ordinary columns cannot be changed. These results could be of theoretical and engineering significance in the exploration of the behaviours of cable-stiffened columns.