To analyze national prevalence, genomovar distribution, and epidemiology of the Burkholderia cepacia complex in Italy, 225 putative B. cepacia complex isolates were obtained from 225 cystic fibrosis (CF) patients attending 18 CF centers. The genomovar status of these isolates was determined by a polyphasic approach, which included whole-cell protein electrophoresis and recA restriction fragment length polymorphism (RFLP) analysis. Two approaches were used to genotype B. cepacia complex isolates: BOX-PCR fingerprinting and pulsedfield gel electrophoresis (PFGE) of genomic macrorestriction fragments. A total of 208 (92%) of 225 isolates belonged to the B. cepacia complex, with Burkholderia cenocepacia as the most prevalent species (61.1%). Clones delineated by PFGE were predominantly linked to a single center; in contrast, BOX-PCR clones were composed of isolates collected either from the same center or from different CF centers and comprised multiple PFGE clusters. Three BOX-PCR clones appeared of special interest. One clone was composed of 17 B. cenocepacia isolates belonging to recA RFLP type H. These isolates were collected from six centers and represented three PFGE clusters. The presence of insertion sequence IS1363 in all isolates and the comparison with PHDC reference isolates identified this clone as PHDC, an epidemic clone prominent in North American CF patients. The second clone included 22 isolates from eight centers and belonged to recA RFLP type AT. The genomovar status of strains with the latter RFLP type is not known. Most of these isolates belonged to four different PFGE clusters. Finally, a third clone comprised nine B. pyrrocinia isolates belonging to recA RFLP type Se13. They represented three PFGE clusters and were collected in three CF centers.In the late 1970s and 1980s, reports on the recovery of Burkholderia cepacia from cystic fibrosis (CF) specimens began to appear (29), and the emergence of this pathogen was subsequently reviewed (25,35,36). Polyphasic taxonomic studies identified bacteria tentatively classified as B. cepacia as a complex of at least nine closely related species (genomovars). This B. cepacia complex consists of B. cepacia,