Enterococci are now frequent causative agents of nosocomial infections. In this study, we analyzed the frequency and distribution of antibiotic resistance and virulence genotypes of Enterococcus isolates from broiler chickens. Fecal and cecal samples from nine commercial poultry farms were collected to quantify total enterococci. Sixty-nine presumptive enterococci were isolated and identified by API 20 Strep, and their susceptibilities to antibiotics were determined. Genotypes were assessed through the use of a novel DNA microarray carrying 70 taxonomic, 17 virulence, and 174 antibiotic resistance gene probes. Total enterococcal counts were different from farm to farm and between sample sources (P < 0.01). Fifty-one (74%) of the isolates were identified as E. faecium, whereas nine (13%), seven (10%), and two (3%) isolates were identified as E. hirae, E. faecalis, and E. gallinarum, respectively. Multiple-antibiotic resistance was evident in E. faecium and E. faecalis isolates. The most common multiple-antibiotic resistance phenotype was Bac Ery Tyl Lin Str Gen Tet Cip. Genes conferring resistance to aminoglycoside (aac, aacA-aphD, aadB, aphA, sat4), macrolide (ermA, ermB, ermAM, msrC), tetracycline (tetL, tetM, tetO), streptogramin (satG_vatE8), bacitracin (bcrR), and lincosamide (linB) antibiotics were detected in corresponding phenotypes. A range of 9 to 12 different virulence genes was found in E. faecalis, including ace, agg, agrB Efs (agrB gene of E. faecalis), cad1, the cAM373 and cCF10 genes, cob, cpd1, cylAB, efaA Efs , and gelE. All seven E. faecalis isolates were found to carry the gelE gene and to hydrolize gelatin and bile salts. Results from this study showed the presence of enterococci of public and environmental health concerns in broiler chicken farms and demonstrated the utility of a microarray to quickly and reliably analyze resistance and virulence genotypes of Enterococcus spp.Enterococcus spp., particularly E. faecium and E. faecalis, are important in public health; these species are responsible for approximately 12% of all nosocomial infections in the United States (11,22). In humans, enterococci cause urinary tract infections, bacteremia, peritonitis, and endocarditis, with about 90% of all clinical infections being caused by E. faecalis and E. faecium (22). The virulence of enterococci is associated with several genes, including ace (collagen binding cell wall protein), acm (surface-exposed antigen), agg (aggregative pheromone-inducing adherence to extra-matrix protein), agrB Efs (AgrB protein of E. faecalis), esp (enterococcal surface protein), hyl (hyaluronidase), cad1 (pheromone cAD1 precursor lipoprotein), the cAM373 gene (sex pheromone cAM373 precursor), the cCF10 gene (pheromone cCF10 precursor lipoprotein), cob (pheromone cOB1 precursor/lipoprotein, YaeC family), cpd1 (pheromone cPD1 lipoprotein), cylABLM (hemolysin), efaA Efs (endocarditis-specific antigen), sagA (secreted antigen), and gelE (gelatinase) (22,29). These virulence factors have been reported in enterococci isolated f...