2018
DOI: 10.22409/engevista.v20i3.9470
|View full text |Cite
|
Sign up to set email alerts
|

Previsão do consumo de eletricidade no Nordeste Brasileiro

Abstract: O crescimento do consumo de energia elétrica no Brasil gera impactos no modo de vida da sociedade moderna, quando mostra sua relevância e apresenta diversas possibilidades de estudos. Este artigo analisou a série temporal do consumo de energia elétrica no Nordeste brasileiro, no período de janeiro de 2004 a dezembro de 2013. O método utilizado foi preconizado por Box & Jenkins (1976), por meio dos modelos da família ARIMA. Para a análise da série e a escolha do modelo para previsões do ano de 2013, foi usa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 7 publications
0
1
0
Order By: Relevance
“…Statistical models, usually linear, work well for problems with small amounts of data. Autoregressive Integrated Moving Average (ARIMA) [7] is one of the most widely used methods for time series forecasting. On the other hand, artificial neural networks, fuzzy systems, support vector machines, and evolutionary computation are Computational Intelligence models [8] that have flexibility and the capacity to handle complex and non-linear data.…”
Section: Related Workmentioning
confidence: 99%
“…Statistical models, usually linear, work well for problems with small amounts of data. Autoregressive Integrated Moving Average (ARIMA) [7] is one of the most widely used methods for time series forecasting. On the other hand, artificial neural networks, fuzzy systems, support vector machines, and evolutionary computation are Computational Intelligence models [8] that have flexibility and the capacity to handle complex and non-linear data.…”
Section: Related Workmentioning
confidence: 99%