For networks with human-driven vehicles (HDVs) only, pricing with arc-specific tolls has been proposed to achieve minimization of travel times in a decentralized way. However, the policy is hardly feasible from a technical viewpoint without connectivity. Therefore, for networks with mixed traffic of HDVs and connected and autonomous vehicles (CAVs), this paper considers pricing in a scenario where only CAVs are charged. In contrast to HDVs, CAVs can be managed as individual vehicles or as a fleet. In the latter case, CAVs can be routed to minimize the travel time of the fleet of CAVs or that of the entire fleet of HDVs and CAVs. We have a selfish user behavior in the first case, a private monopolist behavior in the second, a social planner behavior in the third. Pricing achieves in a decentralized way the social planner optimum. Tolls are not unique and can take both positive and negative values. Marginal cost pricing is one solution. The valid toll set is provided, and tolls are then computed according to two schemes: one with positive tolls only and minimum toll expenditure, and one with both tolls and subsidies and zero net expenditure. Convergent algorithms are used for the mixed-behavior equilibrium (simplicial decomposition algorithm) and toll determination (cutting plane algorithm). The computational experience with three networks: a two-arc network representative of the classic town bypass case, the Nguyen-Dupuis network, and the Anaheim network, provides useful policy insight.