This highlight concerns the birth, development, and present status of unique polyurethanes consisting of polyisobutylene soft segments and conventional hard segments (PIBbased PUs) exhibiting unprecedented combinations of mechanical properties and oxidative/hydrolytic/biological stability. Impetus for developments was to improve the rather poor chemical resistance of conventional polyurethanes by replacing their soft segments with polyisobutylene segments. Research started in the 1980s with the synthesis of a,x-polyisobutylene diols (HO-PIB-OH) by the inifer technique and preparation of PIB-based PUs, which indeed exhibited outstanding stabilities, however, had poor mechanical properties. Because of cumbersome early techniques and expensive reagents, worldwide research and industrial interest waned and developments went into hibernation. Recent discoveries, including living isobutylene polymerization, improved end-functionalizations, inexpensive ingredients, and new insight into PU morphology, lead to simple and less expensive synthesis strategies and, consequently, to resumption of fundamental and applied research. Presently, we can produce kilogram quantities of polyurethanes and polyureas with unprecedented combinations of excellent physical-mechanical-environmental-biological and processing properties. This highlight focuses on facts and insights, which occurred since the discovery and shaped developments. These events are worth reviewing and analyzing because they illustrate how contemporary academic research is driven by curiosity (fun) and economic considerations (money).