In this article, the nonlinear dynamic responses of sandwich functionally graded (FG) porous cylindrical shell embedded in elastic media are investigated. The shell studied here consists of three layers, of which the outer and inner skins are made of solid metal, while the core is FG porous metal foam. Partial differential equations are derived by utilizing the improved Donnell’s nonlinear shell theory and Hamilton’s principle. Afterwards, the Galerkin method is used to transform the governing equations into nonlinear ordinary differential equations, and an approximate analytical solution is obtained by using the multiple scales method. The effects of various system parameters, specifically, the radial load, core thickness, foam type, foam coefficient, structure damping, and Winkler-Pasternak foundation parameters on nonlinear internal resonance of the sandwich FG porous thin shells are evaluated.