2004
DOI: 10.1080/01431160412331270812
|View full text |Cite
|
Sign up to set email alerts
|

Principal component analysis applied to feature-oriented band ratios of hyperspectral data: A tool for vegetation studies

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
11
0
3

Year Published

2008
2008
2023
2023

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 36 publications
(14 citation statements)
references
References 0 publications
0
11
0
3
Order By: Relevance
“…These four bands contain most of the spectral information in vegetation-related studies (Huemmrich et al 1999, Almeida andFilho 2004), including two visible and a near infra-red bands (TM/ETM 2, 3, and 4), and a middle infra-red (TM/ETM 5). The second, third and fourth components showed the most striking in relation to the fire features of interest.…”
Section: Principal Component Analysismentioning
confidence: 99%
“…These four bands contain most of the spectral information in vegetation-related studies (Huemmrich et al 1999, Almeida andFilho 2004), including two visible and a near infra-red bands (TM/ETM 2, 3, and 4), and a middle infra-red (TM/ETM 5). The second, third and fourth components showed the most striking in relation to the fire features of interest.…”
Section: Principal Component Analysismentioning
confidence: 99%
“…o mapeamento destas duas variáveis concomitantemente implica que o método é capaz de rastrear a assinatura específica da vegetação estressada (marcada por variações bruscas de gradiente entre bandas), bem como variações na reflectância relativa de espectros de mesma geometria. No caso do MF-MT, a menor quantidade de pixels mapeados como anômalos do ponto de vista geobotânico deve-se pelo menos aos seguintes fatores: (i) o método busca a assinatura específica de endmembers, o que restringe o comportamento espectral mais holís-tico, característico da vegetação (e.g, Almeida & Souza Filho, 2004); (ii) o algoritmo MT diminui consideravelmente a quantidade de pixels mapeados, função da possibilidade de descarte de falsos-positivos.…”
Section: Figura 9 -Análise De Dados Aster Na Estação Seca (A): Imageunclassified
“…Our use of PCA helped reduce spectral overlap and redundancy of image data, which has been shown to improve model discrimination between vegetation and bare ground in savannas [99]. While the overall accuracy of our classification was 86.7% (95% CI 0.843, 0.888) with a Kappa coefficient of 0.832, it is important to note that any land cover classification will contain error, and this is particularly true for semi-arid savanna systems where environmental variability creates a mosaic landscape of diverse plant community assemblages [62].…”
Section: Limitationsmentioning
confidence: 99%