The bilayer approach of embedded attenuated Phase Shift Masks (EAPSM), causing phase shift and transmission by two different materials offers advantages compared to the single layer solution. Three different PSM blank types with the stacks Ta/SiO 2 -6%, Ta/SiO 2 -30% and Ta/SiON-30% have been manufactured and characterized. Afterwards, identical line pattern of different feature sizes and duty cycles have been patterned in each of the three PSM types as well as in MoSi for reference. Using the AIMS™ fab 193i tool we have evaluated the lithographic performance of the four PSM in terms of contrast, normalized image slope (NILS), process latitude and process window. Improvements of up to 20% contrast, 10% NILS and 65% exposure latitude have been achieved for the Ta/SiO 2 6% stack compared to the MoSi material with the same transmittance. In addition, the high transmission PSM clearly offers advantages in contrast, NILS and exposure latitude especially for smaller features.