Interpretive Structural Modeling (ISM) is a technique to establish the interrelationships between elements of interest in a specific domain through experts’ knowledge of the context of the elements. This technique has been applied in numerous domains and the list continues to grow due to its simplistic concept, while sustainability has taken the lead. The partially automated or manual application of this technique has been prone to errors as witnessed in the literature due to a series of mathematical steps of higher-order computing complexity. Therefore, this work proposes to develop an end-to-end graphical software, SmartISM, to implement ISM technique and MICMAC (Matrice d’Impacts Croisés Multiplication Appliquée á un Classement (cross-impact matrix multiplication applied to classification)), generally applied along with ISM to classify variables. Further, a scoping review has been conducted to study the applications of ISM in the previous studies using Denyer and Tranfield’s (2009) framework and newly developed SmartISM. For the development of SmartISM, Microsoft Excel software has been used, and relevant algorithms and VBA (Visual Basic for Applications) functions have been illustrated. For the transitivity calculation the Warshall algorithm has been used and a new algorithm reduced conical matrix has been introduced to remove edges while retaining the reachability of variables and structure of digraph in the final model. The scoping review results demonstrate 21 different domains such as sustainability, supply chain and logistics, information technology, energy, human resource, marketing, and operations among others; numerous types of constructs such as enablers, barriers, critical success factors, strategies, practices, among others, and their numbers varied from 5 to 32; number of decision makers ranged between 2 to 120 with a median value of 11, and belong to academia, industry, and/or government; and usage of multiple techniques of discourse and survey for decision making and data collection. Furthermore, the SmartISM reproduced results show that only 29 out of 77 studies selected have a correct application of ISM after discounting the generalized transitivity incorporation. The outcome of this work will help in more informed applications of this technique in newer domains and utilization of SmartISM to efficiently model the interrelationships among variables.