2008 Seventh International Conference on Machine Learning and Applications 2008
DOI: 10.1109/icmla.2008.117
|View full text |Cite
|
Sign up to set email alerts
|

Prioritizing Health Promotion Plans with k-Bayesian Network Classifier

Abstract: Recently, Bayesian Network Classifiers (BNCs) have attracted many researchers because they can produce classification models with dependencies among attributes. From the application viewpoint, however, BNCs sometimes produce models too complicated to interpret easily. In this paper, we propose k-Bayesian Network Classifier (k-BNC), which is a new method to reconstruct the attribute-dependency relationship from data for health promotion planning. From the health promotion viewpoint, it would be highly advantage… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2010
2010
2021
2021

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 13 publications
0
3
0
1
Order By: Relevance
“…The steel industry also presents relevant research for systematic mapping (Krishna et al, 2015;Sarkar et al, 2017Sarkar et al, , 2018Sarkar et al, , 2019aShirali et al, 2018), as well as applications in the area of healthcare (Di Noia et al, 2019;Kao et al, 2018;Olsen et al, 2009;Saâdaoui et al, 2015;Ueno et al, 2008), mining (Luo et al, 2016;Qu, 2009;Sanmiquel et al, 2015Sanmiquel et al, , 2018 and petrochemical (Bevilacqua et al, 2008;Cheng et al, 2013;Sanchez-Pi et al, 2014;Waghmare & Pai, 2013).…”
Section: Insights Identified In the Systematic Mapping On Dm In Oshmentioning
confidence: 99%
See 1 more Smart Citation
“…The steel industry also presents relevant research for systematic mapping (Krishna et al, 2015;Sarkar et al, 2017Sarkar et al, , 2018Sarkar et al, , 2019aShirali et al, 2018), as well as applications in the area of healthcare (Di Noia et al, 2019;Kao et al, 2018;Olsen et al, 2009;Saâdaoui et al, 2015;Ueno et al, 2008), mining (Luo et al, 2016;Qu, 2009;Sanmiquel et al, 2015Sanmiquel et al, , 2018 and petrochemical (Bevilacqua et al, 2008;Cheng et al, 2013;Sanchez-Pi et al, 2014;Waghmare & Pai, 2013).…”
Section: Insights Identified In the Systematic Mapping On Dm In Oshmentioning
confidence: 99%
“…As for the types of data that can go through the mining process, this sample includes research studies that use images (Rubaiyat et al, 2016;Siddula et al, 2016) and videos (Paliyawan et al, 2014;Ueno et al, 2008), being directly associated with the concept of machine learning and automation in the worker's environment. Other studies present textual data sets in formats of injuries (Tixier et al, 2017) and accidents reports (Liao & Perng, 2008;Sarkar et al, 2016) and medical examinations (Bonneterre et al, 2012).…”
Section: Insights Identified In the Systematic Mapping On Dm In Oshmentioning
confidence: 99%
“…Se encontró una población de 247 pacientes de los cuales se disponían 1 692 registros. Experimentado con clasificadores de tipo Bayesiano (17), meta-clasificadores tipo Bagging y diferentes árboles de decisión, se seleccionó un predictor tipo RepTree tipo árbol de decisión, con un porcentaje de clasificaciones correctas de 84,2 %. Los resultados de la clasificación se describen en la Tabla 2.…”
Section: Figura 2 Estructura De Almacenamiento Matricial De Los Procunclassified
“…When an instance described by a set of attributes is classified, a Bayesian network classifier considers the conditional dependences between attributes. As a result, Bayesian network classifier has been used in a wide range of applications [5][6][7][8]. Despite an improved idea and a better classification performance, Bayesian network classifier has a number of limitations.…”
Section: Introductionmentioning
confidence: 99%