2018 IEEE International Conference on Intelligence and Security Informatics (ISI) 2018
DOI: 10.1109/isi.2018.8587319
|View full text |Cite
|
Sign up to set email alerts
|

Privacy Preserving on Trajectories Created by Wi-Fi Connections in a University Campus

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2019
2019
2022
2022

Publication Types

Select...
2
2
1

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 18 publications
0
2
0
1
Order By: Relevance
“…Visando atender as exigências legais, determinados grupos de usuários são omitidos pelo algoritmo de anonimização, e a partir desta amostra foram traçadas trajetórias pela sequência de conexões efetuadas por todo o campus (Gomes, 2019;Mangrich et al, 2019;Pavan et al, 2020). Para o presente estudo, obtiveram-se 79260 trajetórias, coletadas a partir dos dados de conexão dos 3 dias de maior intensidade de uso da rede em agosto de 2019 (Figura 1).…”
Section: Metodologia E Resultadosunclassified
“…Visando atender as exigências legais, determinados grupos de usuários são omitidos pelo algoritmo de anonimização, e a partir desta amostra foram traçadas trajetórias pela sequência de conexões efetuadas por todo o campus (Gomes, 2019;Mangrich et al, 2019;Pavan et al, 2020). Para o presente estudo, obtiveram-se 79260 trajetórias, coletadas a partir dos dados de conexão dos 3 dias de maior intensidade de uso da rede em agosto de 2019 (Figura 1).…”
Section: Metodologia E Resultadosunclassified
“…The methodological process for collecting and anonymizing Wi-Fi data was developed in collaboration with researchers from the Computer Security Laboratory using the β-k-anonymity method for data anonymization. 27,28 By clustering at least k individuals in a group (in our case k = 5) that share characteristics such as location, connection time, and course, and discarding all data from users that do not meet the criteria. To obtain a more secure dataset and avoid sample loss requires an evaluation process that engages both the aimed information one wants to obtain and the adequate generalization for the data collection.…”
Section: Study 2: Social Infrastructures' Potential and Proximitiesmentioning
confidence: 99%
“…If the data are anonymized, GDPR and LGPD are not applied. 20 Anonymity is considered a state of privacy. 21 To Warekar and Patil, 22 the central idea of anonymization is to ensure that the person is not identified, reached, and tracked.…”
Section: Anonymization and Data Privacymentioning
confidence: 99%