In this paper, an integrated urban earthquake vulnerability assessment framework, which considers vulnerability of urban environment in a holistic manner and performs the vulnerability assessment for the neighborhood scale, is proposed. The main motivation behind this approach is the inability to implement existing vulnerability assessment methodologies for countries like Turkey, where the required data are usually missing or inadequate for the decision-makers in prioritization their limited resources for risk reduction in the administrative units from which they are responsible for. The methodology integrates socio-economical, structural, coastal, ground condition, vulnerabilities (fragilities), as well as accessibility to critical services. The proposed methodology is implemented for Eskisehir, which is one of the metropolitans of Turkey. In the implementation of the proposed framework, geographic information system (GIS) is used. While the overall vulnerabilities obtained for neighborhoods are mapped in GIS, the overall vulnerabilities obtained for buildings are visualized in 3D city model. The main reason behind using different mapping and visualization tools for vulnerabilities is to provide better ways for communicating with decision-makers. The implementation of the proposed vulnerability assessment methodology indicates that an urban area may have different vulnerability patterns in terms of structural, socio-economical, and accessibility to critical services. When such patterns are