In this paper, an integrated urban earthquake vulnerability assessment framework, which considers vulnerability of urban environment in a holistic manner and performs the vulnerability assessment for the neighborhood scale, is proposed. The main motivation behind this approach is the inability to implement existing vulnerability assessment methodologies for countries like Turkey, where the required data are usually missing or inadequate for the decision-makers in prioritization their limited resources for risk reduction in the administrative units from which they are responsible for. The methodology integrates socio-economical, structural, coastal, ground condition, vulnerabilities (fragilities), as well as accessibility to critical services. The proposed methodology is implemented for Eskisehir, which is one of the metropolitans of Turkey. In the implementation of the proposed framework, geographic information system (GIS) is used. While the overall vulnerabilities obtained for neighborhoods are mapped in GIS, the overall vulnerabilities obtained for buildings are visualized in 3D city model. The main reason behind using different mapping and visualization tools for vulnerabilities is to provide better ways for communicating with decision-makers. The implementation of the proposed vulnerability assessment methodology indicates that an urban area may have different vulnerability patterns in terms of structural, socio-economical, and accessibility to critical services. When such patterns are
Earth slopes are generally designed in an environment characterized by numerous uncertainties, stemming from limited sampling efforts on soil strata with variable soil properties, amplified further by the discrepancy between in situ and laboratory measured soil strengths. Additional uncertainties are also introduced from various simplifying assumptions and idealizations that are necessary for a practical mathematical analysis of stability.The uncertainties involved in the short-term stability of soil slopes have been evaluated from an extensive literature survey. A procedure for developing design of earth slopes based on a permissible risk is formulated whereby experience, p~~blished research results, experimental test data and judgement can be consistently incorporated in the evaluation of uncertainties and reliability of a given design. An example of slope design is presented to illustrate the proposed risk-based design method.
A review on the historical evolution of seismic hazard maps in Turkey is followed by summarizing the important aspects of the updated national probabilistic seismic hazard maps. Comparisons with the predecessor probabilistic seismic hazard maps as well as the implications on the national design codes conclude the paper.
A probabilistic model is presented to obtain a realistic estimate of earthquake insurance rates for reinforced concrete buildings in Turkey. The model integrates information on seismic hazard and information on expected earthquake damage on engineering facilities in a systematic way, yielding to estimates of earthquake insurance premiums. In order to demonstrate the application of the proposed probabilistic method, earthquake insurance rates are computed for reinforced concrete buildings constructed in five cities located in different seismic zones of Turkey. The resulting rates are compared with the rates currently charged by the insurance companies. The earthquake insurance rates are observed to be sensitive to the assumptions on seismic hazard and damage probability matrices and to increase significantly with increasing violation of the code requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.