2021
DOI: 10.48550/arxiv.2111.15404
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Probabilistic Estimation of 3D Human Shape and Pose with a Semantic Local Parametric Model

Abstract: This paper addresses the problem of 3D human body shape and pose estimation from RGB images. Some recent approaches to this task predict probability distributions over human body model parameters conditioned on the input images. This is motivated by the ill-posed nature of the problem wherein multiple 3D reconstructions may match the image evidence, particularly when some parts of the body are locally occluded. However, body shape parameters in widely-used body models (e.g. SMPL) control global deformations ov… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?