Alloys used for turbine blades have to safely sustain severe thermomechanical loadings during service such as, for example, centrifugal loadings, creep and high temperature gradients. For these applications, cast Ni-based superalloys characterized by a coarse-grained microstructure are widely adopted. This microstructure dictates a strong anisotropic mechanical behaviour and, concurrently, a large scatter in the fatigue properties is observed. In this work, Crystal Plasticity Finite Element (CPFE) simulations and strain measurements performed by means of Digital Image Correlations (DIC) were adopted to study the variability introduced by the coarse-grained microstructure. In particular, the CPFE simulations were calibrated and used to simulate the effect of the grain cluster orientations in proximity to notches, which reproduce the cooling air ducts of the turbine blades. The numerical simulations were experimentally validated by the DIC measurements. This study aims to predict the statistical variability of the strain concentration factors and support component design.