Abstract:A new probabilistic seismic hazard analysis was performed for the city of Bridgetown, Barbados, West Indies. Hazard computations have been performed using the standard Cornell-McGuire approach based on the definition of appropriate seismogenic sources and expected maximum magnitudes, the authors take into consideration the possibility of large subduction interface earthquakes of magnitude 8.0-9.0 beneath the Barbados accretionary prism via application of a characteristic model and slip rates. The analysis has been conducted using a standard logic-tree approach. Uniform hazard spectra have been calculated for the 5% of critical damping and the horizontal component of ground motion for rock site conditions setting 5 return periods (95, 475, 975,2,475 and 4,975 years) and spectral accelerations for 34 structural periods ranging from 0 to 3 s. The disaggregation results suggest that the magnitude-distance pair that dominates the hazard yields M 7.4 and 8.6 and a distance of 42.5 km in the Interface Subduction Zone beneath Barbados for the 475 and 975 years RP (return period), respectively. An event with an M 8.0 at a distance of 107.5 km in the Intraplate Subduction Zone is the second scenario that dominates the hazard for both 475 and 975 years RP.