The RAPID (reconstruction algorithm for probabilistic inspection of defect) method based on Lamb wave detection is an effective method to give the position information of a defect in composite plate. In this paper, an improved RAPID imaging method based on machine learning (ML) is proposed to precisely visualize the location and features of defects in composite plate. First, the specific feature information of the defect, such as type, size and direction, can be identified by analyzing the detection signals through multiple machine learning models. Then, according to the obtained defect features, the scaling parameter β of the RAPID method which controls the size of the elliptical area is revised, and weights are set to the important detection paths which are related to defect features to realize precise defect imaging. The simulation results show that the proposed method can intuitively characterize the location and related feature information of the defect, and effectively improve the accuracy of defect imaging.