A method for isolating adult human bone marrow mesenchymal stem cells (MSCs) was established, and the ability of human MSCs to differentiate into cells with characteristics of cardiomyocytes in vitro was investigated. Selected MSC surface antigens were analyzed by flow cytometry. The MSCs at Passage 2 were treated with 5-azacytidine to investigate their differentiation into cardiomyocytes. Characteristics of the putative myogenic cells were determined by immunohistochemistry and transmission electron and confocal microscopies. The expression of myogenic specific genes was detected by reverse transcriptase-polymerase chain reaction (RT-PCR), real-time quantitative PCR, and DNA sequencing. The MSCs were spindle-shaped with irregular processes and were respectively positive for CD(13), CD(29), CD(44), CD(71) and negative for CD(3), CD(14), CD(15), CD(33), CD(34), CD(38), CD(45), and HLA-DR. The myogenic cells differentiated from MSCs were positive for beta-myosin heavy chain (beta-MHC), desmin, and alpha-cardiac actin. When the myogenic cells were stimulated with low concentration of K(+) (5.0 mM), an increase in intracellular calcium fluorescence was observed. Myofilament-like structures were observed in electron micrographs of the differentiated myogenic cells. The mRNAs of beta-MHC, desmin, alpha-cardiac actin, and cardiac troponin T were highly expressed in the myogenic cells. These results indicate that 5-azacytidine can induce human MSCs to differentiate in vitro into cells with characteristics commonly attributed to cardiomyocytes. Cardiomyocytes cultured from bone marrow sources are potentially valuable for repairing injured myocardium.
Inducible heat shock protein 70 (Hsp70) is one of the most important HSPs for maintenance of cell integrity during normal cellular growth as well as pathophysiological conditions. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a crucial signaling transducer that regulates a diverse array of physiological and pathological processes and is essential for activating NF-jB signaling pathway in response to bacterial lipopolysaccharide (LPS). Here we report a novel mechanism of Hsp70 for preventing LPS-induced NF-jB activation in RAW264.7 macrophage-like cells. Our results show that Hsp70 can associate with TRAF6 physically in the TRAF-C domain and prevent TRAF6 ubiquitination. The stimulation of LPS dissociates the binding of Hsp70 and TRAF6 in a time-dependent manner. Hsp70 inhibits LPS-induced NF-jB signaling cascade activation in heat-shock treated as well as Hsp70 stable transfected RAW264.7 cells and subsequently decreases iNOS and COX-2 expression. Two Hsp70 mutants, Hsp70DC(1-428aa) with N-terminal ATPase domain and Hsp70C(428-642aa) with C-terminal domain, lack the ability to influence TRAF6 ubiquitination and TRAF6-triggered NF-jB activation. Taken together, these findings indicate that Hsp70 inhibits LPS-induced NF-jB activation by binding TRAF6 and preventing its ubiquitination, and results in inhibition of inflammatory mediator production, which provides a new insight for analyzing the effects of Hsp70 on LPS-triggered inflammatory signal transduction pathways.
The stereo correspondence and reconstruction of endoscopic data sub-challenge was organized during the Endovis challenge at MICCAI 2019 in Shenzhen, China. The task was to perform dense depth estimation using 7 training datasets and 2 test sets of structured light data captured using porcine cadavers. These were provided by a team at Intuitive Surgical. 10 teams participated in the challenge day. This paper contains 3 additional methods which were submitted after the challenge finished as well as a supplemental section from these teams on issues they found with the dataset.
These data show that the 249(Ser) p53 mutation in plasma is strongly associated with hepatocellular carcinoma in Qidong patients. We found this mutation was also detected, although it was at a much lower frequency, in plasma DNA of Qidong cirrhotics and healthy controls; We consider that these findings, together with the usual method of HCC diagnosis, will give more information in early diagnosis of HCC, and 249(Ser) p53 mutation should be developed to a new early diagnostic marker for HCC.
The overuse of antibiotics has led to the emergence of a large number of antibiotic-resistant genes in bacteria, and increasing evidence indicates that a fungicide with an antibacterial mechanism different from that of antibiotics is needed. Quaternary ammonium salts (QASs) are a biparental substance with good antibacterial properties that kills bacteria through simple electrostatic adsorption and insertion into cell membranes/altering of cell membrane permeability. Therefore, the probability of bacteria developing drug resistance is greatly reduced. In this review, we focus on the synthesis and application of single-chain QASs, double-chain QASs, heterocyclic QASs, and gemini QASs (GQASs). Some possible structure–function relationships of QASs are also summarized. As such, we hope this review will provide insight for researchers to explore more applications of QASs in the field of antimicrobials with the aim of developing systems for clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.