Dye-sensitized solar cells (DSSCs) are a strong contender for next-generation photovoltaic technology with niche applications as solar-powered windows. The performance of a DSSC is particularly susceptible to the dye sensitizer, which is adsorbed onto the surface of a wide-band-gap semiconductor such as TiO 2 , to form the working electrode. The nature by which such surfaces are sensitized stands to influence the resulting dye•••TiO 2 interfacial structure and thence the operational performance of the DSSC working electrode. In particular, a nanoscopic understanding of the sensitization process would ultimately help to improve DSSC device function. In this study, atomic force microscopy (AFM) is used to image the nanoscopic formation of dye•••TiO 2 interfacial structures. This employs, as case studies, four well-known DSSC dyes adsorbed onto amorphous TiO 2 substrates: two ruthenium-based dyes, N3 and the Black Dye (N749); and two organic dyes, the thiophenylcarbazole, MK-2, and the zwitterionic squaraine, SQ-2. We discover that all four dyes present some form of aggregation upon sensitization of TiO 2 , whose spatial distributions show distinct nanoaggregate particle characteristics. These particle clusters of N749, N3, and MK-2 are found to assemble in lines of nanoaggregates, while clusters of SQ-2 dye chromophores distribute themselves randomly on the amorphous TiO 2 substrates. This nanoparticle structural assembly persists even when these dye•••TiO 2 interfaces are fabricated using hundred-fold diluted dye sensitization concentrations. The formation of dye aggregates in N749 is further studied as a function of dye sensitization time. This tracks the pattern formation of aggregates of N749 and reveals that dye aggregation begins within the first hour and has completed within a 5 h period. The large expanse of dye nanoaggregates observed shows that dye•••dye interactions are much more important than previously envisaged, while the nature of their spatial distribution can be related to different aggregation modes of the dye molecules. These nanostructural features will undoubtedly impact the performance of DSSCs.