Multiple exciton generation, the creation of two electron-hole pairs from one high-energy photon, is well established in bulk semiconductors, but assessments of the efficiency of this effect remain controversial in quantum-confined systems like semiconductor nanocrystals. We used a photoelectrochemical system composed of PbS nanocrystals chemically bound to TiO(2) single crystals to demonstrate the collection of photocurrents with quantum yields greater than one electron per photon. The strong electronic coupling and favorable energy level alignment between PbS nanocrystals and bulk TiO(2) facilitate extraction of multiple excitons more quickly than they recombine, as well as collection of hot electrons from higher quantum dot excited states. Our results have implications for increasing the efficiency of photovoltaic devices by avoiding losses resulting from the thermalization of photogenerated carriers.
Layered metal dichalcogenides have attracted significant interest as a family of single- and few-layer materials that show new physics and are of interest for device applications. Here, we report a comprehensive characterization of the properties of tin disulfide (SnS2), an emerging semiconducting metal dichalcogenide, down to the monolayer limit. Using flakes exfoliated from layered bulk crystals, we establish the characteristics of single- and few-layer SnS2 in optical and atomic force microscopy, Raman spectroscopy and transmission electron microscopy. Band structure measurements in conjunction with ab initio calculations and photoluminescence spectroscopy show that SnS2 is an indirect bandgap semiconductor over the entire thickness range from bulk to single-layer. Field effect transport in SnS2 supported by SiO2/Si suggests predominant scattering by centers at the support interface. Ultrathin transistors show on-off current ratios >10(6), as well as carrier mobilities up to 230 cm(2)/(V s), minimal hysteresis, and near-ideal subthreshold swing for devices screened by a high-k (deionized water) top gate. SnS2 transistors are efficient photodetectors but, similar to other metal dichalcogenides, show a relatively slow response to pulsed irradiation, likely due to adsorbate-induced long-lived extrinsic trap states.
Recent advances have been made in thin-film solar cells using CdTe and CuIn(1-x)Ga(x)Se(2) (CIGS) nanoparticles, which have achieved impressive efficiencies. Despite these efficiencies, CdTe and CIGS are not amenable to large-scale production because of the cost and scarcity of Te, In, and Ga. Cu(2)ZnSnS(4) (CZTS), however, is an emerging solar cell material that contains only earth-abundant elements and has a near-optimal direct band gap of 1.45-1.65 eV and a large absorption coefficient. Here we report the direct synthesis of CZTS nanocrystals using the hot-injection method. In-depth characterization indicated that pure stoichiometric CZTS nanocrystals with an average particle size of 12.8 +/- 1.8 nm were formed. Optical measurements showed a band gap of 1.5 eV, which is optimal for a single-junction solar device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.