With the rising demand for wireless services and increased awareness of the need for data protection, existing network traffic analysis and management architectures are facing unprecedented challenges in classifying and synthesizing the increasingly diverse services and applications. This paper proposes FS-GAN, a federated self-supervised learning framework to support automatic traffic analysis and synthesis over a large number of heterogeneous datasets. FS-GAN is composed of multiple distributed Generative Adversarial Networks (GANs), with a set of generators, each being designed to generate synthesized data samples following the distribution of an individual service traffic, and each discriminator being trained to differentiate the synthesized data samples and the real data samples of a local dataset. A federated learning-based framework is adopted to coordinate local model training processes of different GANs across different datasets. FS-GAN can classify data of unknown types of service and create synthetic samples that capture the traffic distribution of the unknown types. We prove that FS-GAN can minimize the Jensen-Shannon Divergence (JSD) between the distribution of real data across all the datasets and that of the synthesized data samples. FS-GAN also maximizes the JSD among the *This work has been accepted at IEEE Transactions on Mobile Computing.