Polycrystalline spherulites of L-glutamic acid have been crystallized by pH-shift precipitation from stirred aqueous solutions. The time dependent behaviour of the spherulites has been studied during the crystallization process and batch filtration tests have been performed. It has been shown that the FBRM mean chord length of the investigated spherulites decreases in the course of time. The fact that the size reduction progresses faster at higher temperature and the solubility of resuspended polycrystalline particles decreasing with time, implies an ageing mechanism to be responsible for the observed changes in the particle size. It has been shown that the surface area decreases with time, ruling out particle breakage as a possible explanation for the decrease in particle size. XRD and Raman studies of L-glutamic acid, however, show only marginal differences in the crystalline structure of particles obtained from different time stages. The ageing may occur due to several different mechanisms like phase transformation and Ostwald ripening. L-glutamic acid spherulites after 3 h exhibit a 3-fold higher value for the cake resistance as compared to particles after 0.5 h. However, particles obtained after 22 h exhibit an 8-fold lower cake resistance as compared to the initially obtained spherulites, The increase in the cake resistance is attributed to the appearance of small plate-like crystals and a change in the interaction between the crystal surface and the solution.