In an effort to understand molecular mechanisms of human disease and to determine genes responsible, we systematically examine relationships between 3,949 genes, 62,663 mutations and 3,453 associated disorders within the framework of a three-dimensional structurally resolved human interactome, consisting of 4,222 high-quality binary protein-protein interactions with their atomic-resolution interfaces. We find that in-frame mutations (missense point mutations and in-frame insertions and deletions) are enriched on the interaction interfaces of proteins associated with the corresponding disorders, indicating that alteration of specific interactions by in-frame disease mutations is critical in understanding the pathogenesis of many genes. Furthermore, locations of mutations on proteins with regard to interaction interfaces are significantly associated with underlying pathogenic processes and the disease specificity for different mutations of the same gene. Based on these findings, we generate 292 new gene candidates for 694 unknown disease-to-gene associations with proposed molecular mechanism hypotheses, readily expanding our understanding of human genetic diseases and corresponding therapeutic possibilities.
Transition metal phosphides have been extensively investigated owing to their high theoretical capacities and relatively low intercalation potentials vs Li/Li, but their practical applications have been hindered by low electrical conductivity and dramatic volume variation during cycling. In this work, an interesting strategy for the rational design of graphene (GR) encapsulated with a hollow FeP@carbon nanocomposite (H-FeP@C@GR) via a combination of a hydrothermal route, a carbon-coating process, phosphidation treatment, and carbothermic reaction is reported. The hollow FeP (H-FeP) nanospheres shelled with thin carbon layers are wonderfully incorporated into the GR matrix, interconnecting to form a three-dimensional (3D) hierarchical architecture. Such a design offers distinct advantages for FeP-based anode materials for both lithium ion batteries (LIBs) and sodium ion batteries (SIBs). For example, the 3D omnibearing conductive networks from the GR skeleton and outer coating carbon can provide an open freeway for electron/ion transport, promoting the electrode reaction kinetics. In addition, the wrapping of an H-FeP nanosphere in a thin carbon layer enables the formation of a solid electrolyte interphase (SEI) on the carbon layer surface instead of on the individual H-FeP surface, preventing the continual re-forming of the SEI. When used as anode materials for LIBs and SIBs, H-FeP@C@GR exhibited excellent electrochemistry performances.
A hierarchically ordered array of Ag-nanorod bundles is achieved using an inexpensive binary-template-assisted electrodeposition technique. In every bundle, many small gaps are formed between adjacent Ag-nanorods, where "hot spots" are generated. As a result, this plasmonic nanostructure exhibits SERS enhancements of approximately eight orders of magnitude with uniform and reproducible SERS signal throughout the whole chip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.