Appropriate cell number and organ size in a multicellular organism are determined by coordinated cell growth, proliferation, and apoptosis. Disruption of these processes can cause cancer. Recent studies have identified the Large tumor suppressor (Lats)/Warts (Wts) protein kinase as a key component of a pathway that controls the coordination between cell proliferation and apoptosis. Here we describe growth inhibitory functions for a Mob superfamily protein, termed Mats (Mob as tumor suppressor), in Drosophila. Loss of Mats function results in increased cell proliferation, defective apoptosis, and induction of tissue overgrowth. We show that mats and wts function in a common pathway. Mats physically associates with Wts to stimulate the catalytic activity of the Wts kinase. A human Mats ortholog (Mats1) can rescue the lethality associated with loss of Mats function in Drosophila. As Mats1 is mutated in human tumors, Mats-mediated growth inhibition and tumor suppression is likely conserved in humans.
In an effort to understand molecular mechanisms of human disease and to determine genes responsible, we systematically examine relationships between 3,949 genes, 62,663 mutations and 3,453 associated disorders within the framework of a three-dimensional structurally resolved human interactome, consisting of 4,222 high-quality binary protein-protein interactions with their atomic-resolution interfaces. We find that in-frame mutations (missense point mutations and in-frame insertions and deletions) are enriched on the interaction interfaces of proteins associated with the corresponding disorders, indicating that alteration of specific interactions by in-frame disease mutations is critical in understanding the pathogenesis of many genes. Furthermore, locations of mutations on proteins with regard to interaction interfaces are significantly associated with underlying pathogenic processes and the disease specificity for different mutations of the same gene. Based on these findings, we generate 292 new gene candidates for 694 unknown disease-to-gene associations with proposed molecular mechanism hypotheses, readily expanding our understanding of human genetic diseases and corresponding therapeutic possibilities.
Interpreting variants, especially noncoding ones, in the increasing
number of personal genomes is challenging. We used patterns of polymorphisms in
functionally annotated regions in 1092 humans to identify deleterious variants;
then we experimentally validated candidates. We analyzed both coding and
noncoding regions, with the former corroborating the latter. We found regions
particularly sensitive to mutations (“ultrasensitive”) and
variants that are disruptive because of mechanistic effects on
transcription-factor binding (that is, “motif-breakers”). We also
found variants in regions with higher network centrality tend to be deleterious.
Insertions and deletions followed a similar pattern to single-nucleotide
variants, with some notable exceptions (e.g., certain deletions and enhancers).
On the basis of these patterns, we developed a computational tool (FunSeq),
whose application to ~90 cancer genomes reveals nearly a hundred
candidate noncoding drivers.
The incidence of melanoma is increasing more than any other cancer, and knowledge of its genetic alterations is limited. To systematically analyze such alterations, we performed whole-exome sequencing of 14 matched normal and metastatic tumor DNAs. Using stringent criteria, we identified 68 genes that appeared to be somatically mutated at elevated frequency, many of which are not known to be genetically altered in tumors. Most importantly, we discovered that TRRAP harbored a recurrent mutation that clustered in one position (p. Ser722Phe) in 6 out of 67 affected individuals (~4%), as well as a previously unidentified gene, GRIN2A, which was mutated in 33% of melanoma samples. The nature, pattern and functional evaluation of the TRRAP recurrent mutation suggest that TRRAP functions as an oncogene. Our study provides, to our knowledge, the most comprehensive map of genetic alterations in melanoma to date and suggests that the glutamate signaling pathway is involved in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.