Amorphous alloy (MGs) is a solid alloy with disordered atomic accumulation obtained by ultra-rapid solidification of alloy melt. The atom deviates from the equilibrium position and is in metastable state. Up to now, a large number of MGs have been applied to the treatment of dye and heavy metal contaminated wastewater and ideal experimental results have been obtained. However, there is no literature to systematically summarize the chemical reaction and degradation mechanism in the process of degradation. On the basis of reviewing the classification, application, and synthesis of MGs, this paper introduces in detail the chemical reactions such as decolorization, mineralization, and ion leaching of Fe-based amorphous alloy (Fe-MGs) in the degradation of organic and inorganic salt wastewater through direct reduction or advanced oxidation mechanism. Compared with crystalline materials, the higher reaction rate of Fe-MGs can be attributed to lower activation energy, negative redox potential, loose product layer, and band structure with downward shift of valence band top. Finally, some suggestions and prospects are put forward for the limitations and research prospects of MGs in the environmental field, which provides a new idea for the synthesis of new environmental functional materials.