Chemical solution deposition (CSD) technique is recently gaining momentum for the fabrication of electrolyte materials for solid oxide fuel cells (SOFCs) due to its costeffectiveness, high yield, and simplicity of the process requirements. The advanced vacuum deposition techniques such as sputtering, atomic layer deposition (ALD), pulsed laser deposition (PLD), metallo-organic chemical vapor deposition (MOCVD) are lacking in scalability and cost-effectiveness. CSD technique includes a variety of approaches such as sol-gel process, chelate process, and metallo-organic decomposition. The present chapter discusses briefly about the evolution of CSD method and its subsequent entry to the field of SOFCs, various solution methods associated with different chemical compositions, film deposition techniques, chemical reactions, heat treatment strategies, nucleation and growth kinetics, associated defects, etc. Examples are cited to bring out the history dating back to the discovery of amorphous zirconia film through the successful fabrication of the crystalline fluorite-type films such as yttria-stabilized zirconia (YSZ), scandia-doped ceria (SDC), and crystalline perovskitetype films such as yttria-doped barium zirconate (BZY) and yttria-doped barium cerate (BCY), to name a few.